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ABSTRACT
Automated and scalable approaches for understanding the
semantics of places are critical to improving both existing
and emerging mobile services. In this paper, we present
CrowdSense@Place(CSP), a framework that exploits a pre-
viously untapped resource – opportunistically captured im-
ages and audio clips from smartphones – to link place vis-
its with place categories (e.g., store, restaurant). CSP com-
bines signals based on location and user trajectories (using
WiFi/GPS) along with various visual and audio place “hints”
mined from opportunistic sensor data. Place hints include
words spoken by people, text written on signs or objects rec-
ognized in the environment. We evaluate CSP with a seven-
week, 36-user experiment involving 1,241 places in five lo-
cations around the world. Our results show that CSP can
classify places into a variety of categories with an overall
accuracy of 69%, outperforming currently available alterna-
tive solutions.
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INTRODUCTION
Smartphones embedded with a growing diversity of new sen-
sors continue to capture media headlines and the attention
of both consumers and researchers alike. However, loca-
tion remains the most successful and widely used contextual
signal in everyday usage. Awareness of user location un-
derpins many popular and emerging mobile applications, in-
cluding local search, point-of-interest recommendation ser-
vices, navigation, and geo-tagging for photographs and tweets.
Still, just like most forms of low-level sensor data, many of
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the potential uses of location require that we extract high-
level pieces of information. A key abstraction when inter-
preting location sensor data isplace– that is, logical loca-
tions meaningful to users, such as where they work, live, ex-
ercise, or shop. Prior work has shown how places can be dis-
covered from temporal streams of user location coordinates
[5, 19, 16, 13]. However, if we can automaticallycharac-
terizeplaces by linking them with attributes, such as place
categories (e.g., “clothing store,” “gym”) or likely associated
user activities (e.g., “eating,” “work”), we can realize pow-
erful location- and context-based scenarios. For example,
mobile applications such as location-based reminders [29]
or content delivery [22] can become aware of place seman-
tics. Beyond potential mobile applications, scalable tech-
niques for characterizing the places people visit can act as
a valuable signal for activity recognition, allowing greater
understanding of large-scale human behavioral patterns.

In this paper, we proposeCrowdSense@Place(CSP) a frame-
work for categorizing places that relies on a previously un-
used source of sensor data – opportunistically collected im-
ages and audio clips crowdsourced from smartphone users.
CSP users install a smartphone application that exploits in-
termittent opportunities throughout the day to sample the mi-
crophone and camera whenever the device is exposed to the
environment, as when users receive calls, check email, or
browse the Web. These sampled images and audio clips con-
tain a rich collection of hints about each place the user visits,
including written text (e.g., menus, store signage, posters),
spoken words (e.g., when a customer purchases a cup of cof-
fee) or physical objects (e.g., cups, cars). To extract these
hints from the environment, CSP incorporates a variety of
image- and audio-based classifiers (e.g., scene classification,
optical-character-recognition,object and speech recognition,
sound classification). The output of these classifiers is merged
with conventional location-based signals from WiFi and GPS
sensors to segment user trajectories into separate place vis-
its as well as provide additional features that discriminate
places. In CSP, place characteristics are learned using topic
models [8] typically applied to text collections. With this
approach, image and audio classifier outputs and location-
based signals are represented as discrete tokens (words) grouped
by place visit (documents). Topics learned from the model
correspond approximately to a place category, with individ-
ual places represented as a weighted combination of place
categories. CSP can automatically categorize previously un-
seen places by inferring the topic distribution for the new
place and assigning a category based on the dominant topic.



Our paper makes the following contributions:

• CrowdSense@Place is, to the best of our knowledge, the
first framework for characterizing places that exploits op-
portunistically crowdsourced images and audio from smart-
phones – in addition to using more conventional sensors
(e.g., GPS/WiFi). By intelligently leveraging this new
source of sensor data, we can differentiate a greater num-
ber of place categories than currently possible using exist-
ing techniques.

• We propose a topic-model-based approach to modeling
places that can effectively combine a variety of image-
and audio-based classifiers (e.g., scene recognition, OCR,
speech recognition, etc.) along with mobility-based sig-
nals from GPS/WiFi sensors. Our design and evaluation
indicates which classifiers are effective for place catego-
rization, with some classifiers being tuned for this partic-
ular application.

• We have evaluated CSP with a seven-week, 36-person de-
ployment using commodity smartphones. Our primary
finding demonstrates that CSP can classify the 1,241 places
study participants encountered into a total of seven place
categories, while still maintaining high levels of accuracy
– with 69% achieved across all place categories.

TOWARDS UNDERSTANDING PLACES
In this section we overview existing approaches to recog-
nizing and categorizing places before discussing how oppor-
tunistically sampled images and audio can be used to char-
acterize the everyday places that users encounter.

Existing Approaches. The study of places – locations
that are semantically meaningful to everyday people – has
primarily focused on two main aspects: (1) the discovery
of place visits mined from user trajectories (e.g., a time-
series of GPS coordinates); and (2) the allocation of descrip-
tors to places that are discovered, such as place categories
(e.g., “theatre,” “drug store”), informal labels (e.g., “par-
ents’ house”), or activities associated with the location (e.g.,
“eating,” “exercise”). Place-discovery techniques [5, 19, 16,
13] commonly rely on location information based on GPS
or WiFi sensors to determine features, such as the duration a
user remained in the same logical location.

Techniques for allocating descriptors to places have employed
a relatively more diverse range of data sources, either rely-
ing on data collected in situ while users are visiting places
(e.g., [19, 31]) or exploiting existing large-scale data collec-
tions, such as point-of-interest databases (e.g., Bing, Yelp)
or location-based community-generated content (e.g., Twit-
ter, FourSquare). In [14, 36], data from personally carried
devices is augmented by incorporating the user into the loop,
with users either providing or confirming location semantics.
Techniques proposed in [20, 34, 24] leverage FourSquare
check-in activity to determine place categories.

Are Location-based Lookups the Answer? An intuitive
approach to accumulating information about many places is
to rely on the increasingly rich place information available

on the Internet. One example would be performing a search
of a location-based service (e.g., local search, recommen-
dation services, Web search) based on the user’s location
coordinates. However, in practice, it is not always possi-
ble to accurately know which place a user is located based
purely on their location estimate. The error in GPS-, GSM-
, or WiFi-based location estimates often ranges between 10
and 400 meters. Within this margin of error, the user may be
present in one of several different places. [20] studies pre-
cisely this issue in the Beijing area and reports, for example,
that the average 50-square-meter region has more than four
distinct places. Similarly, we find that during CSP deploy-
ment, 426 of the 1,241 total place visits cannot be correctly
associated with a place based solely on the location estimate
of the user’s smartphone. We observe that this occurs, for ex-
ample, when users visit multiple places within a single large
building (e.g., shopping mall). Because they are indoors,
their location estimate cannot update, making it difficult to
determine which place they are visiting. In the Evaluation
section of this paper, we compare CSP’s performance to a
baseline approach that leverages solely location estimates
and a large-scale location database; our results show that
CSP outperforms this technique by 40% when performing
place categorization.

Leveraging Rich Visual and Acoustic Place Hints. Dif-
ferent places, such as restaurants, stores, homes, and work-
places often contain a variety of visual and acoustic clues
that allow people to intuitively understand a surprising amount
about a location, even if they have never been there before.
To better illustrate the types of hints that are available with
this approach, we manually examine the images and sounds
sampled from different types of places in a large dataset col-
lected during the evaluation of CSP (see the Evaluation sec-
tion for additional details). Figure1 shows a set of captured
images from diverse places located in Los Angeles, Beijing,
Seoul, and San Francisco. In Figure1, we see a coffee cup,
a distinctive coffee store brand logo, and words associated
with coffee (e.g., “blend,” “roast”) that appear to have been
taken near the cash register during payment. Figure1 also
shows shoes mounted on the wall and an assortment of signs
describing the store (e.g., “city chain,” “converse”). Ourex-
periment logs which smartphone applications are being used
when images are captured. We find that these particular im-
ages are taken as users place calls, send text messages, and
interact with their music applications. What Figure1 cannot
illustrate are the additional acoustic hints present in these
locations, which capture not only a place’s characteristics
but also how the people in the place behave. Audio clips
from the coffee shop capture the exchanges between the cus-
tomers and employees as coffee is ordered and payed for, or
words spoken by baristas when orders are ready for pickup
(e.g., “coffee,” “macchiato,” “non-fat”). Similarly, within
the clothing stores, audio clips capture employees answer-
ing customers questions as to clothing sizes or colors, and
welcoming them to the store (while often stating the store
name). Finally, as can be seen in the images and overheard
from the audio clips, much of the data collected is unusable.

Due to the uncontrolled nature of collection, which is trans-
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Figure 1. Example of opportunistically captured images. Images on
the top two rows show hints for inferring the type of place, such as ob-
jects (coffee cup or shoes) or text (signs or brand names). Inthe bottom
row, we see noisy images caused by blurring or camera direction.

parent to the user, images are frequently blurry or capture
unhelpful scenes (e.g., the floor, roof, or sky). Unsurpris-
ingly, this pattern is repeated in the audio clips, which fre-
quently contain too much background noise to be intelligi-
ble or simply capture silence. CSP currently overcomes this
problem with simple brute force: users collectively capture
large volumes of both image and audio data daily and repeat-
edly visit places that are important to them. Crowdsourcing
allows CSP to circumvent the limitations of data quality even
if only a fraction of collected data is ultimately usable.

Our exploitation of opportunistically captured sensor data is
related to the more general concept ofopportunistic sens-
ing [10], which proposes to collectively leverage sensors
in consumer devices to form large-scale sensor networks.
The smartphone application CenceMe [1] adopts this oppor-
tunistic approach and collects images during phone calls or
sensor-based triggers towards a larger goal of using phone
sensors to automate user participation within social networks.
CenceMe and CSP differ because they have completely dif-
ferent objectives (place understanding compared to social
networking); additionally, with CenceMe, no inference is
performed on the collected images (although inference is ap-
plied to other sensors such as the accelerometer). Attempt-
ing to understand the user environment from body-worn sen-
sors including cameras and microphones is also similar in
spirit to projects, such as SenseCam [23] and various wear-
able sensor systems [30] used to build “life-logging” appli-
cations. Unlike these projects, which capture sensor data rel-
atively continuously using purpose-built devices deliberately
deployed by the user, CSP only has sporadic opportunities to
capture data and must rely on crowdsourcing to accumulate
enough “clean” data to achieve its application objectives.

The use of a wider range of sensing modalities to improve
location services has been previously considered, as in [7],
which improved localization accuracy by exploiting smart-
phone sensors, including the camera. However, the objec-

tive in [7] was to determine the physical boundaries of a log-
ical location (e.g., a McDonalds outlet). CSP is only con-
cerned with place classification and relies on existing meth-
ods (e.g., WiFi) to perform place segmentation; as such,
both projects are complementary to each other. VibN [35]
is a smartphone application that improves point-of-interest
search and recommendation using both manually and op-
portunistically collected phone sensor data. Through the
collection of microphone data, along with user surveys and
mobility patterns, VibN identifies popular points of interest
in the city. In contrast to CSP, VibN performs no analysis
over collected audio and requires the user to manually lis-
ten to audio clips to decide if the place is of interest. Po-
tentially, the techniques developed in CSP could be applied
within VibN to automate some of these manual stages. CSP
has a closer relationship with sensor fusion frameworks that
attempt to understand the physical environments developed
by the robotics community. For example, [33] attempts to
utilize cameras along with other sensors (e.g., laser based
range-finding) to categorize physical environments (e.g.,kitchen,
living room). However, these techniques assume carefully
positioned and calibrated sensors, and are concerned with
different types of classification that can assist with the navi-
gation and interaction of the robot within these locations.

CROWDSENSE@PLACE
In the following section, we describe the overall architecture
of CrowdSense@Place and detail the key processing stages
performed when categorizing places using crowdsourced smart-
phone sensor data.

Overview
CSP is split between two software components – namely, a
smartphone application and offline server-side processingof
the collected data. The smartphone application operates as
a background service that recognizes places using radio fin-
gerprinting of nearby WiFi access points. CSP opportunisti-
cally captures images and audio clips at this location – unless
the user has previously prevented data collection at this par-
ticular place or for a period of time (e.g., disabling sensor
collection for six hours). Based on hints about place cate-
gory mined from this collected data, and combined with data
collected by other users, CSP can automatically determine
the type of place (e.g., restaurant) without user intervention.
By using CSP, a smartphone can be aware of the place cate-
gory of the user’s location, sharing this information with any
installed location-based/context-sensitive applications.

To bootstrap the place category, recognition models employed
by CSP users can annotate the category of place they are
in, which allows CSP to learn over time which collection
of place hints (e.g., spoken words, keywords seen on signs)
most often correspond to a particular place category. Not all
users need to provide place annotations because the training
examples from all users are shared to build a single place
category model. Similarly, not all places need to be anno-
tated – place category models are designed to generalize to
never-before-seen places. Finally, even if users disable the
collection of images and audio data, they can still benefit be-
cause places they visit might have already been categorized
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Figure 2. CrowdSense@Place processing stages.

by CSP (using the data contributed by other users).

Figure2 shows the overall architecture and dataflow that oc-
curs within CSP. It shows mobility information, collected by
WiFi and GPS sensors, along with image and audio clips
being uploaded from user smartphones to server-side infras-
tructure for further processing and, ultimately, place cate-
gory modeling. Data from the smartphone is not immedi-
ately uploaded, but rather waits for a period of 24 hours,
letting the user decide whether to delete collected data. Fur-
thermore, by waiting, the smartphone client can exploit op-
portunities to upload the data at a potentially lower energy
cost by transmitting when the phone is line-powered and/or
WiFi connectivity is available – which commonly occurs
while the phone is recharging. During server-side process-
ing of the collected data, CSP applies a variety of classi-
fiers to mine hints as to the place category. CSP employs
object recognition, indoor scene classification, and optical
character recognition to process collected images. Similarly,
a speech recognizer and sound event classifier are applied
to collected audio clips. To model place categories, CSP
adopts a topic-modeling approach that incorporates the out-
put of these classifiers, along with user trajectory informa-
tion. Places encountered by CSP users are modeled as docu-
ments, and the output of classifiers along with user mobility
patterns are discretized into terms that populate each doc-
ument. A subset of all documents (places) are labeled by
users with a single overall document topic (place category).
Through topic modeling, each topic is related to a distribu-
tion of terms and each place is related to a distribution of top-
ics. We find that, for most places, a dominant topic emerges
that represents the category for this place. As new places
are presented to CSP, the learned topic model is applied, en-
abling the place category to be inferred.

Smartphone Client
The CSP smartphone client performs the following primary
functions: i) place segmentation, which uses WiFi finger-
prints and GPS to discover places and later recognize them
again upon subsequent visits; ii) opportunistic crowdsens-
ing, which gathers image and audio sensor data about the
places the user visits; and iii) privacy configuration, offer-
ing users complete control over all data collected and the

ability to stop any collected sensor data from leaving the
phone. Secondary application functions include logic for i)
uploading collected sensor data and ii) interacting with the
CSP servers to receive the predicted place category. We de-
veloped our prototype application for Android smartphones
and implemented it as two software components: the first is
a background service responsible for sensor sampling and
place segmentation; the second is a simple user interface
and is largely responsible for offering privacy controls and
allowing users to manually label places.

Place Segmentation. As users move from location to lo-
cation, each distinct place is recognized based on its unique
WiFi fingerprint. This is a standard approach for place dis-
covery, commonly used in the literature [9, 18]. During
standard operation, our smartphone client regularly performs
WiFi scans to identify nearby WiFi access points. When-
ever a WiFi fingerprint is encountered that is unlike those
previously seen, a new place is assumed to have been dis-
covered. Similarly, previously visited places are recognized
based on their WiFi fingerprint being sufficiently similar to
fingerprints that have been observed earlier. More formally,
our WiFi fingerprint similarity functionS is defined using
the Tanimoto Coefficient:

S =

{

different (move), if
~ft1 ·

~ft2

‖~ft1‖
2

+‖~ft2‖
2

−~ft1 ·
~ft2

≤ ϕ

same (stationary), else

where~fti is a vector of WiFi SSIDs (i.e., WiFi access point
names) scanned atti for a certain duration, andϕ is the sim-
ilarity threshold. The output ofS is a similarity metric rang-
ing between0.0 and1.0. Place changes are detected by eval-
uatingS(~ft−1, ~ft). If S exceedsplacethres the two places
are determined to be the same; otherwise they are assumed to
be different. Discovered places are associated with the most
recent GPS estimate, allowing the WiFi-fingerprint-defined
place to be tied to a physical location.

Sensor Sampling. Our smartphone client adopts a simple
heuristic to improve the quality of image and audio data col-
lected; sampling occurs after a small random delay once the
user starts an application or uses an important phone func-



tion (e.g., receiving a phone call). By adopting this prac-
tice, the phone samples when it is exposed to the environ-
ment. However, data quality is still highly variable and of-
ten poor (e.g, images captured of the floor or audio clips
overwhelmed by background noise). To provide some lim-
ited awareness of phone resources, our client maintains a
coarse sampling budget of a fixed number of images and au-
dio clips that is reset when prolonged periods of recharging
occur (monitored by system events that indicate the phone
is line-powered). Moreover, available storage is also moni-
tored, and the application never samples when the phone is
below a minimum amount of available storage space.

Privacy. Given the sensitivity of the sensor data CSP col-
lects, providing the users with control over their own data is
paramount. All data is forced to reside on the smartphone
for at least 24 hours, during which time, users can delete
any data they are uncomfortable with CSP using. For this
purpose, our client incorporates a simple interface that al-
lows users to view all images and play all audio clips, which
they can then manually choose to delete. To further sim-
plify this process, with the press of a single button, users
can decide to purge all collected sensor data for the previous
1, 6, or 24 hours. Finally, as a preventative measure, users
can also pause data collection for an upcoming time interval
(again 1, 6, or 24 hours) if they anticipate sensitive events
occurring. Alternatively, users can inform the client to never
collect data at a certain place (e.g., home, office).

Sensor Data Classifiers
All image and audio data collected by the CSP smartphone
client is processed through a series of classifiers chosen to
extract various place category hints about each place users
visited. CSP currently utilizes five classifiers: three thatop-
erate on image data, and two that focus on audio. In the
following subsection, we describe each of these in turn.

Optical Character Recognition. To mine written text
found in posters or signs within places, CSP incorporates a
commercial-grade OCR engine developed by Microsoft and
in use in a number of consumer mobile applications (see [15]
for more information). The engine provides well-defined
APIs that allow us to determine both recognized words and
the engine’s confidence in each recognition result.

Indoor Scene Classification. We leverage the techniques
developed in [26] to perform indoor scene classification. This
approach attempts to recognize categories of indoor environ-
ments based on both global and local characteristics of in-
door scenes (e.g., recognizing the strong horizontal visual
patterns present in supermarket shelves). Experimentally,
we discover that this classification technique works best in
the CSP framework if we diverge from the original classifier
design. With CSP, we first extract GIST1 features [25] from
each training image. GIST features are often used in the
literature to capture scene characteristics. The images are
clustered within a GIST-based feature space using standard
k-means clustering. Then, when CSP receives a new image,
1GIST is not an acronym but was named because these features
capture the“gist” of the scene

we do not produce a classification result but instead produce
a vector in which each element is determined by how close
the image is to each cluster center after we have extracted
the GIST features.

Objects Recognition. To recognize a variety of everyday
objects observed within places, CSP adopts theexamplar-
svmapproach proposed in [21]. This hybrid technique of-
fers state-of-the-performance by combining the benefits of
an example-based nearest-neighbor approach with those of
discriminative classifiers. We port a reference implemen-
tation made available by the authors as a processing stage
within CSP. Classifier training is performed using a subset
of the objects found in the PASCAL VOC 2007 dataset [11].
Objects are selected based on how likely they are to be found
in everyday places. This processing stage can recognize the
following 13 objects:{bus, bike, bottle, car, cat, chair, din-
ning table, dog, motorbike, person, potted plant, sofa, tv}.

Speech Recognition. CSP performs speech recognition
using the open source CMU Sphinx recognizer [2]. We use
speech recognition primarily to capture place hints found in
the conversations of people as they interact (e.g., when a user
purchases an item in a store). This recognition system is
based on fully continuous Hidden Markov Models [6] and
uses Mel-frequency Cepstral Coefficients [12] (MFCCs) as
features. We use pre-trained acoustic and language models
also provided as part of the Sphinx project.

Sound Classification. Our final classifier attempts to rec-
ognize simple acoustic events that occur in the background
of audio clips – for example, music playing in the back-
ground in a home or store. We use a classifier developed in-
house that models sounds using a Gaussian Mixture Model [6],
and extracts MFCC features from the audio – just as was
done in the speech recognizer. We collected training data for
this classifier using a variety of smartphones over an extend
time period under everyday settings. Our sound classifier is
trained to recognize the following acoustic events:{music,
voicing, car, large-crowd noise, alarm}.

Place Modeling
We conclude this section by describing how CSP applies the
principles of topic modeling to leverage the output of all
classifiers along with user mobility data to ultimately infer
place categories (e.g., office, store, gym) for the locations
users visit.

Data Pre-processing. CSP begins by building documents,
one for each distinct place a user visits. All data collectedat
a particular place is mined to extract a series of terms, which
can then be assigned to a document associated with that
place. Terms come in two varieties, depending on whether
they are sourced from either classifier or user mobility data.

Classifier Terms. The majority of CSP classifiers produce
a sequence of class inferences (e.g., recognized words or
objects), each with an accompanying classifier confidence
measure. Each class inference corresponds to a different
classifier term. All inferences below a certain level of con-



fidence are immediately filtered using an experimentally de-
termined confidence threshold. Filtering is necessary be-
cause a lot of collected data is noisy; we must filter uncer-
tain inferences, otherwise discriminative terms can be over-
whelmed by noise. The exception to this process is our in-
door scene classification stage, which produces a vector for
each image. This vector is discretized into a series of terms,
each of which correspond to a cluster set of vectors. Be-
fore terms are finally added to documents, we apply con-
ventional term frequency analysis [28] to remove any non-
discriminative terms (i.e., terms that are common across all
places/documents).

Mobility Terms. The underlying assumption in our use of
user mobility is that the visit duration and the time of day
when people visit certain place categories has a consistent
pattern. Intuitive examples of this in practice include a per-
son spending mealtimes at food-related places or being found
on weekdays at their workplace from 9 to 5. Encoding user
trajectories into terms begins in CSP by extracting the stay-
duration and arrival time for each place for each user. Using
this data, a residence-time distribution is created for each
place in the form of a discrete histogram. Each histogram
bin represents a 10-minute period during a single day (i.e.,
144 bins). CSP builds two sets of residence-time distribu-
tions, one for the weekend and one for weekdays, as sug-
gested in [32]. Consequently, the vocabulary of trajectory
terms is 288 (e.g., weekday001,· · · , weekday144, week-
end001,· · · , weekend144). A subset of terms are only used
if they rarely appear across all places visited by a user, which
is determined this time by term frequency-inverse document
frequency [28].

Place Categorization. CSP employs the Labeled Latent
Dirichlet Allocation (L-LDA) model [27] to categorize places
using the documents and terms generated from the crowd-
sourced data. L-LDA is an extension of traditional LDA [8];
it allows topic models to be trained with labeled documents
and even supports documents with more than one label. Top-
ics are learned from the co-occurring terms in places from
the same category, with topics approximately capturing dif-
ferent place categories. A separate L-LDA model is trained
for each place category, and can be used to infer the category
of new, previously unseen places.

We now briefly overview the training process of the L-LDA
model, which CSP uses to extract topics (place categories)
from our collection of documents (places). Let each docu-
mentd be represented by a tuple consisting of a list of word
indicesw(d) = (w1, · · · , wNd

) and a list of binary topic
presence/absence indicatorsΛ(d) = (l1, · · · , lK)where each
wi ∈ {1, · · · , V }, and eachlk ∈ {0, 1}. Here,Nd is the
document length,V is the size of the vocabulary, which
includes all classifier terms and user trajectory terms, and
K is the total number of unique labels in the corpus. The
model generates multinomial topic distributions over vocab-
ulary βk = (βk,1, · · · , βk,V )

T ∼ Dir(· | η) for each topic
k, from a Dirichlet priorη. The L-LDA model then draws
a multinomial mixture distributionθ(d) over the topics that
correspond to their labelsΛ(d). For any document, the final

Category 
# of

place

# of 

visit

Stay
duration

(hour) 

# of 

image

# of

audio

College & 
Education 

120 1,570 2,222 60 -

Arts & 
Entertainment 

89 218 361 81 37

Food & 
Restaurant 

578 1,426 926 534 236

Home 64 3,899 29,632 72 2208

Shops 112 255 175 1026 254

Workplace 116 4,882 12,306 386 1307

Others 162 656 491 156 121

p

Table 1. Description of collected data.

topic distributionθ(d) will correspond to the relevance of the
topic within the document. In other words,θ(d) indicates the
strength of the place categories that are present in any place.

As new data accumulates, CSP can repeat the training pro-
cess, which revises the relationship between topics and the
occurrence of classifier terms and mobility terms in docu-
ments. Whenever a new place – previously unseen to CSP
– enters the system, a new document is created,di and pop-
ulated with terms based on the available data thus far. The
current version of the L-LDA that CSP maintains will be ap-
plied to generateθ(di), and CSP will assign a place category
based on the topic with the highest relevance.

EVALUATION
In this section, we evaluate CSP’s effectiveness in catego-
rizing semantically meaningful places. Our primary result
shows that CSP can link places to a wider range of cat-
egories than previously possible using existing techniques,
while still maintaining high levels of accuracy.

Experimental Methodology
We evaluate CSP with a multi-country deployment using
Android smartphones that includes 1,241 distinct places. We
compare CSP with two benchmark techniques assuming place
categories as defined by FourSquare.

Data Set. We recruit 36 users living in five locations around
the world (Seoul, Seattle, Los Angeles, San Francisco, and
Beijing). Table1 describes the data collection, including
statistics related to places and place visits. Users tend to
gather most images while at stores and food-related places,
and they often disable the camera while at home. We find
that 22% of images are either blurred or completely black.

Metrics. To evaluate the place categorization performance,
we adopt two metrics: (1) accuracy and (2) the distribu-
tion of place category topics. Our topic-model approach to
modeling places generates a probability distribution of top-
ics (i.e., place categories) at each place. Consequently, a
single place can be associated strongly with multiple cate-
gories at the same time – which does reflect reality (e.g., a
coffee shop can often have a dual secondary purpose as a
restaurant). However, to simplify the understanding of our
result, we largely rely on the accuracy metric. In this case,
we assume the topic with the highest probability is the fi-



Category Sub categories

College & 
Education

classroom, library, high school, educational 
institute 

Arts & 
Entertainment 

cinema, theater, museum, exhibit hall, gym, 
karaoke, gaming room, pool hall, stadium 

Food & 
Restaurant 

restaurant, fast food restaurant, cafe, dessert 
shops, ice cream shops, bakery 

Home home, friend/families’ home, dormitory

Shops

bank, bookstore, clothing store, accessories 
store, shoe store, cosmetics shop, department 
store, convenience store, supermarket, salons, 
grocery store, jewelry store, high tech outlet

Workplace 
workplace, office, meeting room, laboratory, 
conference room, seminar room, focus room

Others 
transportation, church, temple, hospital, 
hotel, bars, pubs, clubs, street, unknown

p

p

Table 2. Definition of place categories

nal category for the place. Accuracy is then defined to be:
♯ of correctly recognized places

♯ of places . Occasionally in our evalu-

ation we use the topic probability distribution to more clearly
illustrate an aspect that accuracy alone does not capture.

Baselines. Two baselines are used to benchmark the perfor-
mance of CSP: (1)GPSand (2)Mobility. To compute GPS
we simply give the FourSquare search API [4] the most re-
cent location estimate of the user at the time the user visitsa
place. Multiple places are typically returned to the request,
in which case, we select the closest place to the user’s loca-
tion estimate. Our second baseline,Mobility, is identical to
CSP and classifies places using the same topic modeling ap-
proach; however, topics are built using only user trajectory
information (i.e., histograms of residence-time distributions
at a place). Existing approaches for determining place cate-
gory rely on information of this nature.

Place Categories.To evaluate CSP, we use place categories
defined by FourSquare [3] and adopt its top-level place cat-
egory hierarchy. Our study ignores two of the original nine
categories – Nightlife and Travel Spots. We find users made
very few place visits to Nightlife locations, and we had in-
sufficient data to train our model. The Travel Spots category
is excluded because the focus of our work is in place classifi-
cation, not recognizing mobility type. Table2 lists all seven
categories we use in this study.

The ground truth FourSquare category of each place visited
during our study is based, when possible, on the category
assigned by FourSquare itself. In some cases, FourSquare
doesn’t have a record for a place a user visited. For these
locations, we rely on manual coding performed by five peo-
ple, based on the standard FourSquare definitions. The peo-
ple performing the coding used collected images, audio, and
location (by consulting online mapping services to further
verify the category). Coders’ responses are merged to deter-
mine final categories based on majority decision.

Experiment Parameters and Implementation. We im-
plement CSP’s crowdsensing client using Android SDK 1.5.
The WiFi scanning intervals and window size are 10 seconds
and 30 seconds, respectively, and the similarity thresholdof
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Figure 3. Accuracy of place categorization in (a) each category and (b)
overall places

the WiFi vector is set to 0.7, as suggested in [9]. We imple-
ment the CSP backend on Microsoft Azure.

Place Categorization
We begin by investigating the accuracy of CSP when classi-
fying places into the top-level category hierarchy of FourSquare.
We used five-fold cross-validation to evaluate the perfor-
mance of place categorization. Our results show that CSP
is able to recognize place categories with 69% overall accu-
racy across these seven category types, outperforming both
baseline comparison schemes. Comparable prior work only
employed three or four categories [14, 36]; our use of an ex-
tended number of categories is both more challenging and
practical for applications to use.

Figure 3 shows the overall accuracy for classifying all place
visits in our dataset into the different FourSquare categories.
This figure illustrates that CSP outperformsGPSandMobil-
ity by around 22% to 40%.GPShas the lowest accuracy,
29%±16%; we suspect that this is due to poor indoor local-
ization. In addition,GPSstruggles to differentiate categories
of places located near each other (e.g., stores at the same
position but different floors).Mobility achieves 47%±20%
accuracy. We find that mobility patterns have meaningful
features that can differentiate some place categories. This is
shown in Figure4. For example, participants tend to spend
their nights at home and most of their weekdays at the work-
place. Strong peaks in the distribution of food places occur
at lunch and dinner time. Across all categories, the home
category is the easiest to recognize (and has the highest cat-
egory average); it is recognized accurately 80% of the time.

To more closely examine the comparison between CSP and
the best performing benchmark,Mobility, we consider not
only whether the categorization is correct, but also which
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Mobility-based Method 
Result 

Label 
Col. Work Ent. Shops Food Home Oth.

College 0.44 0.30 0.01 0.04 0.04 0.04 0.12

Work 0.33 0.52 0.01 0.03 0.07 0.01 0.03

Ent. 0.07 0.07 0.19 0.15 0.11 0.19 0.22

Shops 0.00 0.06 0.13 0.38 0.06 0.06 0.31

Food 0.10 0.04 0.02 0.08 0.49 0.05 0.20

Home 0.00 0.00 0.00 0.09 0.00 0.80 0.11

Others 0.06 0.14 0.17 0.14 0.04 0.16 0.30

CrowdSense@Place 
Result 

Label 
Col. Work Ent. Shops Food Home Oth.

College 0.80 0.10 0.01 0.01 0.03 0.00 0.04

Work 0.05 0.71 0.03 0.01 0.02 0.01 0.03

Ent. 0.04 0.04 0.41 0.04 0.33 0.00 0.15

Shops 0.00 0.03 0.00 0.59 0.28 0.00 0.09

Food 0.02 0.11 0.05 0.09 0.66 0.00 0.06
Home 0.00 0.00 0.04 0.02 0.00 0.93 0.00

Others 0.05 0.09 0.09 0.20 0.12 0.10 0.36

Table 3. Confusion matrices of place categories forMobility and
CrowdSense@Place.

categories are confused with each other. Table3 shows con-
fusion matrices for CSP andMobility. From this table we
can seeMobility has trouble recognizing the workplace (44%)
and college (52%) categories; this is due to the similarity of
mobility patterns for students and office workers relative to
colleges and workplaces. In contrast, CSP has high accu-
racy for these two categories: 80% and 71%, respectively.
This is due to the assistance of distinctive place hints from
image data even when the mobility patterns for two place
categories share common traits. Similarly, we can see that
the categories of entertainment and shops are confused un-
der Mobility, whereas CSP does not suffer this same prob-
lem. In Table3 we see the comparison betweenMobility and
CPS across all categories.

CSP’s approach to place modeling captures the fact that some
places can be related to more than one place category. Each
place is modeled as a mixture of topics (i.e., place cate-
gories). In fact, we believe some of the “errors” in classifi-
cation reported in the previously discussed results are dueto
some places being naturally associated with multiple place
categories rather than just one. Figure5 shows the average
topic probability of places belonging to all of our supported
place categories. For easy visualization, the figure shows
just the top three highest-probability topics. We can see from
the figure that CSP allocated the highest topic probability
to the ground-truth place category. Furthermore, additional
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Figure 6. Accuracy of different classifiers used by isolation.

systems (e.g., location-based services, recommendation ser-
vices) would likely benefit from using a place’s topic mix-
ture directly, rather than using a single place category.

Understanding the Benefits of Place Hints
We conclude our evaluation by studying the impact differ-
ent varieties of place hints have on the performance of CSP
place categorization. We find that certain classifiers (OCR
and indoor scene classification – that is, GIST) are far more
effective than others (e.g., speech recognition). The follow-
ing set of results can guide future systems that adopt an op-
portunistic crowdsensing approach.

Figure6 highlights the performance of CSP when using dif-
ferent classifiers and sources of data in isolation. This fig-
ure reports average classification accuracy across the entire
dataset. All variations of CSP shown exploit user trajec-
tory data (mobility data), just as theMobility benchmark
does. The use of indoor scene classification (i.e., GIST fea-
tures) has the largest individual impact. OCR does not have
a strong overall effect because written words are primarily
observed in shopping and food-related places. The perfor-
mance gains from using object detection, speech recogni-
tion, and sound classification are marginal. We find that
while object detection is effective in outdoor environments
(e.g., cars, buses) it operates poorly on our indoor focused
dataset, so the output does not assist strongly with classifi-
cation. Similarly, the results from speech recognition and
sound classification do not have strong discriminative power
between tested place types.

Because GIST- and OCR-based information offered the strongest
discriminative value we, further investigated their usagein
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places.

CSP. Figure7 presents the Kullback-Leibler divergence be-
tween distributions of GIST features each place category.
KL divergence measures the distance between two distribu-
tions: the low value indicates the high similarity. This figure
illustrates that places with same categories have higher sim-
ilarities compare to those of places with different categories.

We only observe a high-frequencyof OCR-recognized words
in shops and food-related places. The result matches intu-
ition, given that these environments are often filled with a
variety of different signs and posters. Figure8(a) shows that
among the 4,158 words recognized by the OCR classifier,
the number of correct words is 451. 86% of true-positive
terms are observed in shopping and food places. Figure8(b)
illustrates the confidence score of OCR terms. The distri-
bution of confidence scores is skewed low, in line with our
manually checked accuracy rates. Thus, this result verifies
the confidence scores of the OCR engine, which we use to
filter words likely to have been incorrectly recognized.

Finally, we explored the relationship between the volume of
data collected and place categorization accuracy. Intuitively,
the more data collected should lead to a more accurate result.
Figure 9 supports this finding by showing the increase in
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topic probability as a function of the number of place visits,
or the number of images collected.

DISCUSSION
In what follows, we describe CSP’s limitations, along with
future research directions, before concluding with potential
applications of the CSP framework.

Limitations and Future Work. Our evaluation demon-
strates that CSP is a promising, novel approach to perform-
ing place characterization. However, our findings also high-
light a number of areas that require further investigation.

Finer Place Categorization.We were unable to accurately
categorize places as precisely as we initially expected. A
number of our classifiers (e.g., object and speech recogni-
tion) contributed little to our ability to classify places.How-
ever, after manually inspecting our deployment data, we no-
tice that by recognizing a relatively small number of specific
place hints, finer-grain place categorization may be possible.
For example, we will test speech recognizers trained on a
constrained vocabulary of discriminative words. By limiting
the vocabulary, we expect higher recognition rates.

Privacy. Although we empowered users to delete (or never
collect) data they felt was too sensitive to share, this clearly
is insufficient for use by the general public. We plan to
pursue a strategy of performing increased local processing
of sensor data on the smartphone itself. For example, fea-
tures will be extracted on the smartphone, with only features
(and not raw data) being uploaded to the CSP server. While
this does not offer watertight privacy protection, it signifi-
cantly advances the existing design and is practical; existing
privacy-preserving features can be tested, and prior smart-
phone sensing projects have shown that local processing of
this complexity is possible [17].

Activity vs. Place Category.Our deployment study showed
us that, in practice, high-quality place hints accumulate slowly.
Often, people would not collect any data for hours, and high-
quality hints are only collected when many factors coincide,
such as a keyword overheard in a conversation or non-blurry
image captured that includes a piece of signage. This makes
our approach ill-suited to reliably make inferences from col-
lected data on a visit-by-visit basis – for example, to perform
some form of activity recognition. Opportunistic Crowd-



Sensing, due to its unpredictable nature, is better suited to in-
crementally learning static information over long time scales.

Application Scenarios. In the remainder of this section we
briefly outline some of CSP’s potential uses.

Enhanced Local Search & Recommendations.CSP can pro-
vide richer awareness of the types of places a user frequently
visits. This information can act as an additional user profile
attribute when providing mobile local search services. Sim-
ilarly, CSP can improve how places are compared and rec-
ommended (e.g., searching for similar places). Instead of
comparing two places solely based on discrete place cate-
gories (e.g., both places are coffee shops), places could be
compared using place hints or topic distributions, allowing
places that share common fine-grain traits (e.g., lighting con-
ditions or frequent music) to be identified.

Rich Crowdsourced Point-of-Interest Category Maps.CSP
can build “maps” that relate places (identified by WiFi fin-
gerprints) to place categories. Such information is a general
building block for many mobile and context-aware applica-
tions. For example, a targeted advertising application can
determine the user’s current place category based on a WiFi
scan performed by his or her smartphone.

Understanding City-scale Behavior Patterns.Due to the
popularity of mobile phones, we can collect large user tra-
jectory datasets relatively easily. Powerful insights about
ourselves and our cities have already been extracted from
such datasets. By merging maps from CSP that link places
to place categories, with user trajectory datasets, we can po-
tentially increase the scope of analysis to include a greater
awareness of user activities.

CONCLUSION
In this paper, we presented CrowdSense@Place, a frame-
work for classifying places into place categories. This frame-
work leverages place category hints mined from opportunis-
tically sampled images and audio clips using smartphones.
CSP models places using topic models, which allow visual
and acoustic place hints to be combined with more conven-
tional signals based on user trajectories. By merging these
two sources of data, and exploiting crowdsourcing to gather
large volumes of data, CSP is able to categorize places into a
broader set of place categories than previously possible. To
validate our framework, we tested CSP during a seven-week,
36 person study which that collected data at 1,241 places
from five locations around the world. Our results showed
that CSP can automatically classify these places into seven
different categories, with an average accuracy of 69%.
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