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ABSTRACT
We propose and evaluate a probabilistic framework for es-
timating a Twitter user’s city-level location based purely
on the content of the user’s tweets, even in the absence
of any other geospatial cues. By augmenting the massive
human-powered sensing capabilities of Twitter and related
microblogging services with content-derived location infor-
mation, this framework can overcome the sparsity of geo-
enabled features in these services and enable new location-
based personalized information services, the targeting of re-
gional advertisements, and so on. Three of the key features
of the proposed approach are: (i) its reliance purely on tweet
content, meaning no need for user IP information, private
login information, or external knowledge bases; (ii) a clas-
sification component for automatically identifying words in
tweets with a strong local geo-scope; and (iii) a lattice-based
neighborhood smoothing model for refining a user’s location
estimate. The system estimates k possible locations for each
user in descending order of confidence. On average we find
that the location estimates converge quickly (needing just
100s of tweets), placing 51% of Twitter users within 100
miles of their actual location.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database applications–Data mining; J.4
[Computer Application]: Social and Behavioral Sciences

General Terms: Algorithms, Experimentation

Keywords: Twitter, location-based estimation, spatial data
mining, text mining

1. INTRODUCTION
The rise of microblogging services like Twitter has spawned

great interest in these systems as human-powered sensing
networks. Since its creation in 2006, Twitter has experi-
enced an exponential explosion in its user base, reaching
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approximately 75 million users as of 2010 [4]. These users
actively publish short messages (“tweets”) of 140 characters
or less to an audience of their subscribers (“followers”). With
such a large geographically diverse user base, Twitter has
essentially published terabytes of real-time “sensor” data in
the form of these status updates.

Mining this people-centric sensor data promises new per-
sonalized information services, including local news summa-
rized from tweets of nearby Twitter users [21], the target-
ing of regional advertisements, spreading business informa-
tion to local customers [3], and novel location-based applica-
tions (e.g., Twitter-based earthquake detection, which can
be faster than through traditional official channels [18]).

Unfortunately, Twitter users have been slow to adopt geospa-
tial features: in a random sample of over 1 million Twitter
users, only 26% have listed a user location as granular as
a city name (e.g., Los Angeles, CA); the rest are overly
general (e.g., California), missing altogether, or nonsensical
(e.g., Wonderland). In addition, Twitter began supporting
per-tweet geo-tagging in August 2009. Unlike user location
(which is a single location associated with a user and listed
in each Twitter user’s profile), this per-tweet geo-tagging
promises extremely fine-tuned Twitter user tracking by as-
sociating each tweet with a latitude and longitude. Our
sample shows, however, that fewer than 0.42% of all tweets
actually use this functionality. Together, the lack of user
adoption of geo-based features per user or per tweet signals
that the promise of Twitter as a location-based sensing sys-
tem may have only limited reach and impact.

To overcome this location sparsity problem, we propose
in this paper to predict a user’s location based purely on
the content of the user’s tweets, even in the absence of any
other geospatial cues. Our intuition is that a user’s tweets
may encode some location-specific content – either specific
place names or certain words or phrases more likely to be
associated with certain locations than others (e.g., “howdy”
for people from Texas). In this way, we can fill-the-gap for
the 74% of Twitter users lacking city-level granular location
information. By augmenting the massive human-powered
sensing capabilities of Twitter and related microblogging
services with content-derived location information, this frame-
work can overcome the sparsity of geo-enabled features in
these services and bring augmented scope and breadth to
emerging location-based personalized information services.

Effectively geo-locating a Twitter user based purely on
the content of their tweets is a difficult task, however:

• First, Twitter status updates are inherently noisy, mix-
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ing a variety of daily interests (e.g., food, sports, daily
chatting with friends). Are there clear location signals
embedded in this mix of topics and interests that can be
identified for locating a user?

• Second, Twitter users often rely on shorthand and non-
standard vocabulary for informal communication, mean-
ing that traditional gazetteer terms and proper place
names (e.g., Eiffel Tower) may not be present in the con-
tent of the tweets at all, making the task of determining
which terms are location-sensitive non-trivial.

• Third, even if we could isolate the location-sensitive at-
tributes of a user’s tweets, a user may have interests that
span multiple locations beyond their immediate home lo-
cation, meaning that the content of their tweets may be
skewed toward words and phrase more consistent with
outside locations. For example, New Yorkers may post
about NBA games in Los Angeles or the earthquake in
Haiti.

• Fourth, a user may have more than one associated lo-
cation, e.g., due to travel, meaning that content-based
location estimation may have difficulty in precisely iden-
tifying a user’s location.

As a consequence, it is challenging to estimate the real lo-
cation for a Twitter user based on an analysis of the user’s
tweets. With these issues in mind, in this paper, we pro-
pose and evaluate a probabilistic framework for estimating
a Twitter user’s city-level location based purely on the con-
tent of the user’s tweets. The proposed approach relies on
three key features: (i) its data input of pure tweet content,
without any external data from users or web-based knowl-
edge bases; (ii) a classifier which identifies words in tweets
with a local geographic scope; and (iii) a lattice-based neigh-
borhood smoothing model for refining the estimated results.
The system provides k estimated cities for each user with
a descending order of possibility. On average, 51% of ran-
domly sampled Twitter users are placed within 100 miles of
their actual location (based on an analysis of just 100s of
tweets). We find that increasing amounts of data (in the
form of wider coverage of Twitter users and their associated
tweets) results in more precise location estimation, giving
us confidence in the robustness and continued refinement of
the approach.

The rest of this paper is organized as follows: Related
work is in Section 2. Section 3 formalizes the problem of
predicting a Twitter user’s geo-location and briefly describes
the sampled Twitter dataset used in the experiments. In
Section 4, our estimation algorithm and corresponding re-
finements are introduced. We present the experimental re-
sults in Section 5. Finally, conclusions and future work are
discussed in Section 6.

2. RELATED WORK
Studying the geographical scope of online content has at-

tracted attention by researchers in the last decade, including
studies of blogs [11, 15], webpages [7], search engine query
logs [8], and even web users [13]. Prior work relevant to this
paper can be categorized roughly into three groups based on
the techniques used in geo-locating: content analysis with
terms in a gazetteer, content analysis with probabilistic lan-
guage models, and inference via social relations.

Several studies try to estimate the location of web con-
tent utilizing content analysis based on geo-related terms in

a specialized external knowledge base (a gazetteer). Ami-
tay et al. [7], Fink et al. [11], and Zong et al. [22] ex-
tracted addresses, postal code, and other information listed
in a geographical gazetteer from web content to identify the
associated geographical scope of web pages and blogs.

Serdyukov et al. [19] generate probabilistic language mod-
els based on the tags that photos are labeled with by Flickr
users. Based on these models and Bayesian inference, they
show how to estimate the location for a photo. In terms of
the intention, their method is similar to our work. However,
they use a GeoNames database to decide whether a user-
submitted tag is a geo-related tag, which can overlook the
spatial usefulness of words that may have a strong geo-scope
(e.g., earthquake, casino, and so on). Separately, the work of
Crandall et al. [10] proposes an approach combining textual
and visual features to place images on a map. They have
restrictions in their task that their system focuses on which
of ten landmarks in a given city is the scope of an image.

In the area of privacy inference, a few researchers have
been studying how a user’s private information may be in-
ferred through an analysis of the user’s social relations. Back-
strom et al. [9], Lindamood et al. [16], and Hearthely et
al. [12] all share a similar assumption that users related
in social networks usually share common attributes. These
methods are orthogonal to our effort and could be used to
augment the content-based approach taken in this paper by
identifying common locations among a Twitter user’s social
network.

Recent work on detecting earthquakes with real-time Twit-
ter data makes use of location information for tracking the
flow of information across time and space [18]. Sakaki et al.
consider each Twitter user as a sensor and apply Kalman
filtering and particle filtering to estimate the center of the
bursty earthquake. Their algorithm requires prior knowl-
edge of where and when the earthquake is reported, empha-
sizing tracking instead of geo-locating users. As a result, this
and related methods could benefit from our efforts to assign
locations to users for whom we have no location information.

3. PRELIMINARIES
In this section, we briefly explain our dataset, formalize

the research problem and describe the experimental setup.

3.1 Location Sparsity on Twitter
To derive a representative sample of Twitter users, we

employed two complementary crawling strategies: crawl-
ing through Twitter’s public timeline API and crawling by
breadth-first search through social edges to crawl each user’s
friends (following) and followers. The first strategy can be
considered as random sampling from active Twitter users
(whose tweets are selected for the public timeline), while
the second strategy extracts a directed acyclic sub-graph of
the whole Twitter social graph, including less active Twit-
ter users. We combine the two strategies to avoid bias in
either one. Using the open-source library twitter4j [5] to ac-
cess Twitter’s open API [6] from September 2009 to January
2010, we collected a base dataset of 1,074,375 user profiles
and 29,479,600 status updates.

Each user profile includes the capacity to list the user’s
name, location, a web link, and a brief biography. We find
that 72.05% of the profiles collected do list a non-empty
location, including locations like “Hollywood, CA”, “Eng-
land”, and “UT: 40.708046,-73.789259”. However, we find
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(a) Population Distribution of the Continental United States (b) User Distribution of Sampled Twitter Dataset

Figure 1: Comparison Between the Actual US Population and the Sample Twitter User Population

that most of these user-submitted locations are overly gen-
eral with a wide geographic scope (e.g., California, world-
wide), missing altogether, or nonsensical (e.g., Wonderland,
“CALI to FORNIA”). Specifically, we examine all locations
listed in the 1,074,375 user profiles and find that just 223,418
(21% of the total) list a location as granular as a city name
and that only 61,335 (5%) list a location as granular as a
latitude/longitude coordinate. This absence of granular lo-
cation information for the majority of Twitter users (74%)
indicates the great potential in estimating or recommending
location for a Twitter user.

For the rest of the paper, we focus our study of Twit-
ter user location estimation on users within the continen-
tal United States. Toward this purpose, we filter all listed
locations that have a valid city-level label in the form of
“cityName”, “cityName, stateName”, and “cityName, state-
Abbreviation”, where we consider all valid cities listed in
the Census 2000 U.S. Gazetteer [1] from the U.S. Census
Bureau. Even when considering these data forms, there can
still be ambiguity for cities listed using just“cityName”, e.g.,
there are three cities named Anderson, four cities named Ar-
lington, and six cities called Madison. For these ambiguous
cases, we only consider cities listed in the form “cityName,
stateName”, and “cityName, stateAbbreviation”. After ap-
plying this filter, we find that there are 130,689 users (with
4,124,960 status updates), accounting for 12% of all sampled
Twitter users. This sample of Twitter users is representa-
tive of the actual population of the United States as can be
seen in Figure 1(a), and Figure 1(b).

3.2 Problem Statement
Given the lack of granular location information for Twit-

ter users, our goal is to estimate the location of a user based
purely on the content of their tweets. Having a reasonable
estimate of a user’s location can enable content personaliza-
tion (e.g., targeting advertisements based on the user’s geo-
graphical scope, pushing related news stories, etc.), targeted
public health web mining (e.g., a Google Flu Trends-like
system that analyzes tweets for regional health monitoring),
and local emergency detection (e.g., detecting emergencies
by monitoring tweets about earthquakes, fires, etc.). By
focusing on the content of a user’s Twitter stream, such an
approach can avoid the need for private user information, IP
address, or other sensitive data. With these goals in mind,

we focus on city-level location estimation for a Twitter user,
where the problem can be formalized as:

Location Estimation Problem: Given a set of tweets
Stweets(u) posted by a Twitter user u, estimate a user’s
probability of being located in city i: p(i|Stweets(u)), such
that the city with maximum probability lest(u) is the user’s
actual location lact(u).

As we have noted, location estimation based on tweet con-
tent is a difficult and challenging problem. Twitter status
updates are inherently noisy, often relying on shorthand and
non-standard vocabulary. It is not obvious that there are
clear location cues embedded in a user’s tweets at all. A
user may have interests which span multiple locations and
a user may have more than one natural location.

3.3 Evaluation Setup and Metrics
Toward developing a content-based user location estima-

tor, we next describe our evaluation setup and introduce
four metrics to help us evaluate the quality of a proposed
estimator.

Test Data: In order to be fair in our evaluation of the
quality of location estimation, we build a test set that is
separate from the 130,689 users previously identified (and
that will be used for building our models for predicting user
location). In particular, we extract a set of active users with
1000+ tweets who have listed their location in the form of
latitude/longitude coordinates. Since these types of user-
submitted locations are typically generated by smartphones,
we assume these locations are correct and can be used as
ground truth. We filter out spammers, promoters, and other
automated-script style Twitter accounts using features de-
rived from Lee et al.’s work [14] on Twitter bot detection, so
that the test set will consist of primarily “regular” Twitter
users for whom location estimation would be most valuable.
Finally, we arrive at 5,190 test users and more than 5 million
of their tweets. These test users are distributed across the
continental United States similar to the distributions seen
in Figure 1(a), and Figure 1(b).

Metrics: To evaluate the quality of a location estimator, we
compare the estimated location of a user versus the actual
city location (which we know based on the city correspond-
ing to their latitude/longitude coordinates). The first metric
we consider is the Error Distance which quantifies the dis-
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tance in miles between the actual location of the user lact(u)
and the estimated location lest(u). The Error Distance for
user u is defined as:

ErrDist(u) = d(lact(u), lest(u))

To evaluate the overall performance of a content-based
user location estimator, we further define the Average Er-
ror Distance across all test users U :

AvgErrDist(U) =

∑
u∈U ErrDist(u)

|U |
A low Average Error Distance means that the system can
geo-locate users close to their real location on average, but it
does not give strong insight into the distribution of location
estimation errors. Hence, the next metric – Accuracy –
considers the percentage of users with their error distance
categorized in the range of 0-100 miles:

Accuracy(U) =
|{u|u ∈ U ∧ ErrDist(u) ≤ 100}|

|U |
Further, since the location estimator predicts k cities for

each user in decreasing order of confidence, we define the
Accuracy with K Estimations (Accuracy@k) which
applies the same Accuracy metric, but over the city in the
top-k with the least error distance to the actual location. In
this way, the metric shows the capacity of an estimator to
identify a good candidate city, even if the first prediction is
in error.

4. CONTENT-BASED LOCATION ESTIMA-
TION: OVERVIEW AND APPROACH

In this section, we begin with an overview of our base-
line approach for content-based location estimation and then
present two key optimizations for improving and refining the
quality of location estimates.

Baseline Location Estimation: First, we can directly
observe the actual distribution across cities for each word
in the sampled dataset. Based on maximum likelihood es-
timation, the probabilistic distribution over cities for word
w can be formalized as p(i|w) which identifies for each word
w the likelihood that it was issued by a user located in city
i. For example, for the word “rockets”, we can see its city
distribution in Figure 2 based on the tweets in the sampled
dataset (with a large peak near Houston, home of NASA
and the NBA basketball team Rockets).

Of course users from cities other than Houston may tweet
the word “rockets”, so reliance on a single word or a single
tweet will necessarily reveal very little information about the
true location of a user. By aggregating across all words in
tweets posted by a particular user, however, our intuition
is that the location of the user will become clear. Given
the set of words Swords(u) extracted from a user’s tweets
Stweets(u), we propose to estimate the probability of the
user being located in city i as:

p(i|Swords(u)) =
∑

w∈Swords(u)

p(i|w) ∗ p(w)

where we use p(w) to denote the probability of the word w
in the whole dataset. Letting count(w) be the number of oc-
currences of the word w, and t be the total number of tokens

Figure 2: City estimates for the term “rockets”

in the corpus, we replace p(w) with count(w)
t

in calculating
the value of p(w). Such an approach will produce a per-user
city probability across all cities. The city with the highest
probability can be taken as the user’s estimated location.
This location estimator is formalized in Algorithm 1.

Algorithm 1 Content-Based User Location Estimation

Input:
tweets: List of n tweets from a Twitter user u
cityList: Cities in continental US with 5k+ people
distributions: Probabilistic distributions for words
k: Number of estimations for each user
Output:
estimatedCities: Top K estimations

1: words = preProcess(tweets)
2: for city in cityList do
3: prob[city]← 0
4: for word in words do
5: prob[city]+ =

distributions[word][city] ∗ word.count
6: end for
7: end for
8: estimatedCities = sort(prob, cityList, k)
9: return estimatedCities

Initial Results: Using this baseline approach, we esti-
mated the location of all users in our test set using per-city
word distributions estimated from the 130,689 users shown
in Figure 1(b). For each user, we parsed their location and
status updates (4,124,960 in all). In parsing the tweets, we
eliminate all occurrences of a standard list of 319 stop words,
as well as screen names (which start with @), hyperlinks, and
punctuation in the tweets. Instead of using stemming, we
use the Jaccard Coefficient to check whether a newly encoun-
tered word is a variation of a previously encountered word.
The Jaccard Coefficient is particularly helpful in handling
informal content like in tweets, e.g., by treating “awesoome”
and “awesooome” as the word “awesome”. In generating the
word distributions, we only consider words that occur at
least 50 times in order to build comparatively accurate mod-
els. Thus, 25,987 per-city word distributions are generated
from a base set of 481,209 distinct words.

Disappointingly, only 10.12% of the 5,119 users in the
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test set are geo-located within 100 miles to their real lo-
cations and the AvgErrDist is 1,773 miles, meaning that
such a baseline content-based location estimator provides
little value. On inspection, we discovered two key problems:
(i) most words are distributed consistently with the popula-
tion across different cities, meaning that most words provide
very little power at distinguishing the location of a user; and
(ii) most cities, especially with a small population, have a
sparse set of words in their tweets, meaning that the per-city
word distributions for these cities are underspecified leading
to large estimation errors.

In the rest of this section, we address these two problems
in turn in hopes of developing a more valuable and refined
location estimator. Concretely, we pursue two directions:

• Identifying Local Words in Tweets: Is there a subset of
words which have a more compact geographical scope
compared to other words in the dataset? And can these
“local” words be discovered from the content of tweets?
By removing noise words and non-local words, we may be
able to isolate words that can distinguish users located
in one city versus another.

• Overcoming Tweet Sparsity: In what way can we over-
come the location sparsity of words in tweets? By explor-
ing approaches for smoothing the distributions of words,
can we improve the quality of user location estimation
by assigning non-zero probability for words to be issued
from cities in which we have no word observations?

4.1 Identifying Local Words in Tweets
Our first challenge is to filter the set of words considered

by the location estimation algorithm (Algorithm 1) to con-
sider primarily words that are essentially “local”. By con-
sidering all words in the location estimator, we saw how
the performance suffers due to the inclusion of noise words
that do not convey a strong sense of location (e.g., “august”,
“peace”, “world”). By observation and intuition, some words
or phrases have a more compact geographical scope. For
example, “howdy” which is a typical greeting word in Texas
may give the estimator a hint that the user is in or near
Texas.

Toward the goal of improving user location estimation, we
characterize the task of identifying local words as a decision
problem. Given a word, we must decide if it is local or non-
local. Since tweets are essentially informal communication,
we find that relying on formally defined location names in
a gazetteer is neither scalable nor provides sufficient cov-
erage. That is, Twitter’s 140 character length restriction
means that users may not write the full address or location
name (e.g., “t-center” instead of “Houston Toyota Center”,
home of the NBA Rockets team. Concretely, we propose to
determine local words using a model-driven approach based
on the observed geographical distribution of the words in
tweets.

4.1.1 Determining Spatial Focus and Dispersion
Intuitively, a local word is one with a high local focus and

a fast dispersion, that is it is very frequent at some central
point (like say in Houston) and then drops off in use rapidly
as we move away from the central point. Non-local words,
on the other hand, may have many multiple central points
with no clear dispersion (e.g., words like basketball). How
do we assess the spatial focus and dispersion of words in
tweets?

Figure 3: Optimized Model for the Word “rockets”

Recently Backstrom et al. introduced a model of spatial
variation for analyzing the geographic distribution of terms
in search engine query logs [8]. The authors propose a gen-
erative probabilistic model in which each query term has a
geographic focus on a map (based on an analysis of the IP-
address-derived locations of users issuing the query term).
Around this center, the frequency shrinks as the distance
from the center increases. Two parameters are assigned for
each model, a constant C which identifies the frequency in
the center, and an exponent α which controls the speed of
how fast the frequency falls as the point goes further away
from the center. The formula for the model is Cd−α which
means that the probability of the query issued from a place
with a distance d from the center is approximately Cd−α.
In the model, a larger α identifies a more compact geo-scope
of a word, while a smaller α displays a more global popular
distribution.

In the context of tweets, we can similarly determine the
focus (C) and dispersion (α) for each tweet word by de-
riving the optimal parameters that fit the observed data.
These parameters C and α are strong criteria for assess-
ing a word’s focus and dispersion, and hence, determining
whether a word is local or not. For a word w, given a center,
the central frequency C, and the exponent α, we compute
the maximum-likelihood value like so: for each city, suppose
all users tweet the word w from the city a total of n times,
then we multiply the overall probability by (Cd−αi )n; if no
users in the city tweet the word w, we multiply the overall
probability by 1− Cd−αi . In the formula, di is the distance
between city i and the center of word w. We add logarithms
of probabilities instead of multiplying probabilities in order
to avoid underflow. For example, let S be the set of oc-
currences for word w (indexed by cities which issued the
word w), and let di be the distance between a city i and the
model’s center. Then:

f(C,α) =
∑
i∈S

logCd−αi +
∑
i/∈S

log (1− Cd−αi )

is the likelihood value for the given center, C and α. Back-
strom et al. also prove that f(C,α) has exactly one local
maximum over its parameter space which means that when
a center is chosen, we can iterate C and α to find the largest
f(C,α) value (and hence, the optimized C and α). Instead
of using a brute-force algorithm to find the optimized set
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Table 1: Example Local Words
Word Latitude Longitude C0 α

automobile 40.2 -85.4 0.5018 1.8874
casino 36.2 -115.24 0.9999 1.5603
tortilla 27.9 -102.2 0.0115 1.0350
canyon 36.52 -111.32 0.2053 1.3696
redsox 42.28 -69.72 0.1387 1.4516

of parameters, we divide the map of the continental United
States into lattices with a size of two by two square de-
grees. For the center in each lattice, we use golden section
search [17] to find the optimized central frequency and the
shrinking factor α. Then we zoom into the lattice which has
the largest likelihood value, and use a finer-grained mesh
on the area around the best chosen center. We repeat this
zoom-and-optimize procedure to identify the optimal C, and
α. Note that the implementation with golden section search
can generate an optimal model for a word within a minute on
a single modern machine and is scalable to handle web-scale
data. To illustrate, Figure 3 shows the optimized model for
the word “rockets” centered around Houston.

4.1.2 Training and Evaluating The Model
Given the model parameters C (focus) and α (dispersion)

for every word, we could directly label as local words all
tweet words with a sufficiently high focus and fast disper-
sion by considering some arbitrary thresholds. However, we
find that such a direct application may lead to many er-
rors (and ultimately poor user location estimation). For
example, some models may lack sufficient supporting data
resulting in a clearly incorrect geographic scope. Hence,
we augment our model of local words with coordinates of
the geo-center, since the geographical centers of local words
should be located in the continental United States, and the
count of the word occurrences, since a higher number of
occurrences of a word will give us more confidence in the
accuracy of the generated model of the word.

Using these features, we train a local word classifier using
the Weka toolkit [20] – which implements several standard
classification algorithms like Naive Bayes, SVM, AdaBoost,
etc. – over a hand-labeled set of standard English words
taken from the 3esl dictionary [2]. Of the 19,178 words in
the core dictionary, 11,004 occur in the sampled Twitter
dataset. Using 10-fold cross-validation and the SimpleCart
classifier, we find that the classifier has a Precision of 98.8%
and Recall and F -Measure both as 98.8%, indicating that
the quality of local word prediction is good. After learning
the classification model over these known English words, we
apply the classifier to the rest of the 14,983 tweet words
(many of which are non-standard words and not in any dic-
tionary), resulting in 3,183 words being classified as local
words.

To illustrate the geographical scope of the local words dis-
covered by the classifier, five local word models are listed
in Table 1. The word “automobile” is located around two
hundred miles south of Detroit which is the traditional auto
manufacturing center of the US. The word“casino”is located
in the center of Las Vegas, two miles east of the North Las
Vegas Airport. “tortilla” is centered a hundred miles south of
the border between Texas and Mexico. The word“canyon” is
located almost at the center of the Grand Canyon. The cen-

Figure 4: Geographical Centers of Local Words Dis-
covered in Sampled Twitter Dataset

ter for the word “redsox” is located 50 miles east of Boston,
home of the baseball team.

In order to visualize the geographical centers of the local
favored words, a few examples are shown on the map of the
continental United States in Figure 4. Based on these and
the other discovered local words, we will evaluate if and how
user location estimation improves in the experimental study
in Section 5.

4.2 Overcoming Tweet Sparsity
The second challenge for improving our content-based user

location estimator is to overcome the sparsity of words across
locations in our sampled Twitter dataset. Due to this sparse-
ness, there are a large number of “tiny” word distributions
(i.e., words issued from only a few cities) The problem is
even more severe when considering cities with a small pop-
ulation. As an example, consider the distribution for the
word“rockets”over the map of the continental United States
displayed in Figure 2. We notice that for a specific word,
the probability for the word to be issued in a city can be
zero since there are no tweets including the word in our
sampled dataset. In order to handle this sparsity, we con-
sider three approaches for smoothing the probability distri-
butions: Laplace smoothing, data-driven geographic smooth-
ing, and model-driven smoothing.

4.2.1 Laplace Smoothing
A simple method of smoothing the per-city word distri-

butions is Laplace smoothing (add-one smoothing) which is
defined as:

p(i|w) =
1 + count(w, i)

V +N(w)

where count(w, i) denotes the term count of word w in city
i; V stands for the size of the vocabulary and N(w) stands
for the total count of w in all the cities. Briefly speaking,
Laplace smoothing assumes every seen or unseen city issued
word w once more than it did in the dataset.

Although simple to implement, Laplace smoothing does
not take the geographic distribution of a word into con-
sideration. That is, a city near Houston with zero occur-
rences of the word “rockets” is treated the same as a city far
from Houston with zero occurrences. Intuitively, the peak
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for “rockets” in Houston (recall Figure 2) should impact the
probability mass at nearby cities.

4.2.2 Data-Driven Geographic Smoothing
To take this geographic nearness into consideration, we

consider two techniques for smoothing the per-city word
distributions by considering neighbors of a city at different
granularities. In the first case, we smooth the distribution by
considering the overall prevalence of a word within a state;
in the second, we consider a lattice-based neighborhood ap-
proach for smoothing at a more refined city-level scale.

State-Level Smoothing: For state-level smoothing, we
aggregate the probabilities of a word w in the cities in a
specific state s (e.g., Texas), and consider the average of the
summation as the probability of the word w occurring in the
state. Letting Sc denote the set of cities in the state s, the
state probability can be formulated as:

ps(s|w) =

∑
i∈Sc

p(i|w)

|Sc|
Furthermore, the probability of the word w to be located in
city i can be a combination of the city probability and the
state probability:

p′(i|w) = λ ∗ p(i|w) + (1− λ) ∗ ps(s|w)

where i stands for a city in the state s, and 1 − λ is the
amount of smoothing. Thus, a small value of λ indicates a
large amount of state-level smoothing.

Lattice-based Neighborhood Smoothing: Naturally,
state-level smoothing is a fairly coarse technique for smooth-
ing word probabilities. For some words, the region of a
state exaggerates the real geographical scope of a word;
meanwhile, the impact of a word issued from a city may
have higher influence over its neighborhood in another state
than the influence over a distant place in the same state.
With this assumption, we apply lattice-based neighborhood
smoothing.

Firstly, we divide the map of the continental United States
into lattices of 1 x 1 square degrees. Letting w denote a
specific word, lat a lattice, and Sc be the set of cities in lat,
the per-lattice probability of a word w can be formalized as:

p(lat|w) =
∑
i∈Sc

p(i|w)

In addition, we consider lattices around (the nearest lat-
tice in all eight directions) lat as the neighbors of the lat-
tice lat. Introducing µ as the parameter of neighborhood
smoothing, the lattice probability is updated as:

p′(lat|w) = µ ∗ p(lat|w) + (1.0− µ) ∗
∑

lati∈Sneighbors

p(lati|w)

In order to utilize the smoothed lattice-based probabil-
ity, another parameter λ is introduced to aggregate the real
probability of w issued from the city i, and the probability
of the smoothed lattice probability. Finally the lattice-based
per-city word probability can be formalized as:

p′(i|w) = λ ∗ p(i|w) + (1.0− λ) ∗ p′(lat|w)

where i is a city within the lattice lat.

4.2.3 Model-Based Smoothing
The final approach to smoothing takes into account the

word models developed in the previous section for identifying
C and α. Applying this model directly, where each word is
distributed according to Cd−α, we can estimate a per-city
word distribution as:

p′(i|w) = C(w)d
−α(w)
i

where C(w) and α(w) are taken to be the optimized pa-
rameters derived from the real data distribution of words
across cities. This model-based smoothing ignores local per-
turbations in the observed word frequencies, in favor of a
more elegant word model (recall Figure 3). Compared to
the data-driven geographic-based smoothing, model-based
smoothing has the advantage of “compactness”, by encoding
each word’s distribution according to just two parameters
and a center, without the need for the actual city word fre-
quencies.

5. EXPERIMENTAL RESULTS
In this section, we detail an experimental study of loca-

tion estimation with local tweet identification and smooth-
ing. The goal of the experiments is to understand: (i) if
the classification of words based on their spatial distribu-
tion significantly helps improve the performance of location
estimation by filtering out non-local words; (ii) how the dif-
ferent smoothing techniques help overcome the problem of
data sparseness; and (iii) how the amount of information
available about a particular user (via tweets) impacts the
quality of estimation.

5.1 Location Estimation: Impact of Refinements
Recall that in our initial application of the baseline lo-

cation estimator, we found that only 10.12% of the 5,119
users in the test set could be geo-located within 100 miles
of their actual locations and that the AvgErrDist across all
5,119 users was 1,773 miles. To test the impact of the two
refinements – local word identification and smoothing – we
update Algorithm 1 to filter out all non-local words and to
update the per-city word probabilities with the smoothing
approaches described in the previous section.

For each user u in the test set, the system estimates k
(10 in the experiments) possible cities in descending or-
der of confidence. Table 2 reports the Accuracy, Aver-
age Error Distance, and Accuracy@k for the original base-
line user location estimation approach (Baseline), an ap-
proach that augments the baseline with local word filter-
ing but no smoothing (+ Local Filtering), and then four
approaches that augment local word filtering with smooth-
ing – LF+Laplace, LF+State-level, LF+Neighborhood, and
LF+Model-based. Recall that Accuracy measures the frac-
tion of users whose locations have been estimated to within
100 miles of their actual location.

First, note the strong positive impact of local word filter-
ing. With local word filtering alone, we reach an Accuracy
of 0.498 which is almost five times as high as the Accuracy
we get with the baseline approach that uses all words in the
sampled Twitter dataset. The gap indicates the strength of
the noise introduced by non-local words, which significantly
affects the quality of user location estimation. Also consider
that this result means that nearly 50% of the users in our
test set can be placed in their actual city purely based on
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Table 2: Impact of Refinements on User Location Estimation
Method ACC AvgErrDist (Miles) ACC@2 ACC@3 ACC@5
Baseline 0.101 1773.146 0.375 0.425 0.476

+ Local Filtering (LF) 0.498 539.191 0.619 0.682 0.781
+ LF + Laplace 0.480 587.551 0.593 0.647 0.745

+ LF + State-Level 0.502 551.436 0.617 0.687 0.783
+ LF + Neighborhood 0.510 535.564 0.624 0.694 0.788
+ LF + Model-based 0.250 719.238 0.352 0.415 0.486

an analysis of the content of their tweets. Across all users in
the test set, filtering local words reduces the Average Error
Distance from 1,773 miles to 539 miles. While this result
is encouraging, it also shows that there are large estimation
errors for many of our test users in contrast to the 50% we
can place within 100 miles of their actual location. Our hy-
pothesis is that some users are inherently difficult to locate
based on their tweets. For example, some users may in-
tentionally misrepresent their home location, say by a New
Yorker listing a location in Iran as part of sympathy for
the recent Green movement. Other users may tweet purely
about global topics and not reveal any latent local biases
in their choice of words. In our continuing work, we are
examining these large error cases.

Continuing our examination of Table 2, we also observe
the positive impact of smoothing. Though less strong than
local word filtering, we see that Laplace, State-level, and
Neighborhood smoothing result in better user location es-
timation than either the baseline or the baseline plus local
word filtering approach. As we had surmised, the Neighbor-
hood smoothing provides the best overall results, placing
51% of users within 100 miles of their actual location, with
an Average Error Distance over all users of 535 miles.

Comparing State-level smoothing to Neighborhood smooth-
ing, we find similar results with respect to the baseline,
but slightly better results for the Neighborhood approach.
We attribute the slightly worse performance of state-level
smoothing to the regional errors introduced by smoothing
toward the entire state instead of a local region. For ex-
ample, state-level smoothing will favor the impact of words
emitted by a city that is distant but within the same state
relative to a words emitted by a city that is nearby but in a
different state.

As a negative result, we can see the poor performance of
model-based smoothing, which nearly undoes the positive
impact of local word filtering altogether. This indicates that
the model-based approach overly smooths out local pertur-
bations in the actual data distribution, which can be useful
for leveraging small local variations to locate users.

To further examine the differences among the several tested
approaches, we show in Figure 5 the error distance in miles
versus the fraction of users for whom the estimator can
place within a particular error distance. The figure com-
pares the original baseline user location estimation approach
(Baseline), the baseline approach plus local word filtering
(+ Local Filtering), and then the best performing smooth-
ing approach (LF+Neighborhood) and the worst performing
smoothing approach (LF+Model-based). The x-axis iden-
tifies the error distance in miles in log-scale and the y-axis
quantifies the fraction of users located within a specific error
distance. We can clearly see the strong impact of local word
filtering and the minor improvement of smoothing across all

Figure 5: Comparison Across Estimators

error distances. For the best performing approach, we can
see that nearly 30% of users are placed within 10 miles of
their actual location in addition to the 51% within 100 miles.

5.2 Capacity of the Estimator
To better understand the capacity of the location estima-

tor to identify the correct user location, we next relax our
requirement that the estimator make only a single location
prediction. Instead, we are interested to see if the estimator
can identify a good location somewhere in the top-k of its
predicted cities. Such a relaxation allows us to appreciate if
the estimator is identifying some local signals in many cases,
even if the estimator does not place the best location in the
top most probable position.

Returning to Table 2, we report the Accuracy@k for each
of the approaches. Recall Accuracy@k measures the fraction
of users located within 100 miles of their actual location, for
some city in the top k predictions of the estimator. For
example, for Accuracy@5 for LF+Neighborhood we find a
result of 0.788, meaning that within the first five estimated
locations, we find at least one location within 100 miles of
the actual location in 79% of cases. This indicates that
the content-based location estimator has high capacity for
accurate location estimation, considering the top-5 cities are
recommended from a pool of all cities in the US. This is a
positive sign for making further refinements and ultimately
to improving the top-1 city prediction.

Similarly, Figure 6(a) shows the error distance distribu-
tion for varying choices of k, where each point represents
the fraction of users with an error in that range (i.e., the
first point represents errors of 0-100 miles, the second point
100-200 miles, and so on). The location estimator identifies
a city in the top-10 that lies within 100 miles of a user’s
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(a) Error Distance Distribution (b) Average Error Distance

Figure 6: Capacity of the Location Estimator: Using the Best Estimation in the Top-k

actual city in 90% of all cases. Considering the top-1, top-3,
top-5, and top-10, we can see that the location estimator
performs increasingly well. Figure 6(b) continues this anal-
ysis by reporting the Average Error Distance as we consider
increasing k. The original reported error of around 500 miles
for the top-1 prediction drops as we increase k, down to just
82 miles when we consider the best possible city in the top-
10.

5.3 Estimation Quality: Number of Tweets
An important question remains: how does the quality of

estimation change with an increasing amount of user infor-
mation? In all of our experiments so far, we have considered
the test set in which each user has 1000+ tweets. But per-
haps we can find equally good estimation results using only
10 or 100 tweets?

To illustrate the impact of an increasing amount of user
data, we begin with a specific example of a test user with
a location in Salt Lake City. Figure 7 illustrates the se-
quence of city estimations based on an increasing amount
of user tweet data. With 10 tweets, Chicago has the domi-
nant highest estimated probability. With 100 tweets, several
cities in California, Salt Lake City and Milwaukee exceed
Chicago. By 300 tweets, the algorithm geo-locates the user
in the actual city, Salt Lake City; however there is still sig-
nificant noise, with several other cities ranking close behind
Salt Lake City. By 500 tweets, the probability of Salt Lake
City increases dramatically, converging on Salt Lake City as
the user data increases to 700 tweets and then 1000 tweets.

To quantify the impact of an increasing amount of user
information, we calculate the distribution of Error Distance
and the Average Error Distance across all of the test users
based on the Local Word filtering location estimator relying
on a range of tweets from 100 to 1000. Figure 8(a) shows
the error distance distribution, where each point represents
the fraction of users with an error in that range (i.e., the
first point represents errors of 0-100 miles, the second point
100-200 miles, and so on). The errors are distributed simi-
larly; even with only 100 tweets, more than 40% of users are
located within 100 miles. In Figure 8(b), we can see that
with only 100 tweets that the Average Error Distance is 670
miles. As more tweets are used to refine the estimation, the
error drops significantly. This suggests that as users con-

tinue to tweet, they “leak” more location information which
can result in more refined estimation.

6. CONCLUSION
The promise of the massive human-powered sensing ca-

pabilities of Twitter and related microblogging services de-
pends heavily on the presence of location information, which
we have seen is largely absent from the majority of Twitter
users. To overcome this location sparsity and to enable new
location-based personalized information services, we have
proposed and evaluated a probabilistic framework for es-
timating a Twitter user’s city-level location based purely on
the content of the user’s tweets, even in the absence of any
other geospatial cues. The content-based approach relies on
two key refinements: (i) a classification component for au-
tomatically identifying words in tweets with a strong local
geo-scope; and (ii) a lattice-based neighborhood smoothing
model for refining a user’s location estimate. We have seen
how the location estimator can place 51% of Twitter users
within 100 miles of their actual location.

As a purely data-driven approach, we anticipate contin-
ued refinement of this approach through the incorporation
of more data (in the form of wider coverage of Twitter users
and their associated tweets). We are also interested to com-
bine the purely content-based approach here with social net-
work inference based approaches for combining location ev-
idence of social ties in the estimator. We are also interested
to further explore the temporal aspect of location estima-
tion, to develop more robust estimators that can track a
user’s location over time.
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