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Abstract

What can wearable sensors and usage of smart phones tell us about academic performance, self-

reported sleep quality, stress and mental health condition? To answer this question, we collected 

extensive subjective and objective data using mobile phones, surveys, and wearable sensors worn 

day and night from 66 participants, for 30 days each, totaling 1,980 days of data. We analyzed 

daily and monthly behavioral and physiological patterns and identified factors that affect academic 

performance (GPA), Pittsburg Sleep Quality Index (PSQI) score, perceived stress scale (PSS), and 

mental health composite score (MCS) from SF-12, using these month-long data. We also 

examined how accurately the collected data classified the participants into groups of high/low 

GPA, good/poor sleep quality, high/low self-reported stress, high/low MCS using feature selection 

and machine learning techniques. We found associations among PSQI, PSS, MCS, and GPA and 

personality types. Classification accuracies using the objective data from wearable sensors and 

mobile phones ranged from 67–92%.
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I. Introduction

Many mobile and wearable devices have been recently commercialized to capture 24/7 

behavior. Wearable sensors now provide estimates of the number of steps taken, physical 

activity levels, rest/activity patterns and physiological outcomes such as heart rate and skin 

conductance. Mobile phones can measure location, distance traveled, social interactions 

(phone call and short message service: SMS), application usage, and acceleration and light 

levels. Researchers have used wearable sensors and/or mobile phone data to understand 

factors such as personality type [1], mood [2, 3], sleep [3, 4, 5] and self-reported stress [6, 

7]. In previous work, we collected 5 days of data (wearable sensor, mobile phone and 

surveys) from 18 participants and were able to classify them into high and low perceived 

stress groups using machine learning [6]. We also found features in mobile phone usage, 
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wearable sensor and survey data that were significantly related to perceived stress level 

using correlation analysis. In the current study, we have increased our sampling period to 

~30-days per person and our population to 66 participants to collect more intensive multi-

modal data including perceived stress, sleep, personality, physiological, behavioral and 

social interaction data that are important factors in academic performance, sleep, stress, and 

mental health in addition to what were monitored on the phone in previous studies [4, 5, 8, 

9, 10].

Academic performance, sleep quality, stress, and mental health can depend on internal and 

external factors such as personality traits, physiology, behavior and social interaction. While 

previous studies have examined multiple days and nights (from one week to a couple 

months) of daily behaviors including sleep, activity and social interactions, [4, 5, 8, 9, 10], 

few studies have examined capturing both internal and external factors to understand which 

factors are related and how, and fewer have used objective sensor data. Understanding these 

associations can be used to design tools to reduce stress, improve academic performance, 

sleep quality, and mental health. For example, using data accumulated on the phone and the 

model developed from the data from both the entire set of users as well as for each 

individual, personalized feedback can be provided to users reporting high stress, together 

with insights into what behaviors are likely to be related to their high stress, and which 

behaviors they might change to reduce it.

The interactions between academic performance, sleep quality, self-reported stress, self-

reported mental health and personality categories have been previously characterized using 

self-reported data. Specifically, academic performance has been correlated with personal 

traits (conscientiousness, openness and agreeableness) [11, 12] and sleep parameters have 

been reported to be influenced by personality traits of neuroticism [13], extraversion [14], 

and agreeableness [15]. Vollrath summarized the relationship between stress and the Big 

Five Inventory Personality Test categories and identified that neuroticism was a predictor of 

stress [16].

We are particularly interested in examining the association between behavioral factors and 

health, since behaviors may be more modifiable than personality. Daily technology use may 

influence sleep and perceived stress; for example, increased mobile phone use is related to 

poor sleep quality and perceived stress [17, 18, 19]. Social interactions also play important 

roles in health: Christakis et al. investigated how health-related behaviors such as obesity 

and happiness spread over social networks and found that happy and unhappy people are 

clustered in social networks and happiness spread up to three degrees of separation over 

social networks [20, 21]. Moturu et al. investigated the association among sociability, sleep 

quality and mood with self-reported surveys and mobile phone proximity data from 54 

participants for one month [3]: They found lower sociability was related to poorer mood and 

higher median daily sociability occurred when people slept for 7–8 hours.

In this paper, we collected 30-days of multi-modal data from undergraduate students who 

are socially connected, and aim to identify (1) which factors characterizing individuals in 

daily life separate high/low GPA groups, self-reported good/poor sleepers (from PSQI 

score), self-reported high/low stress groups (from PSS score) and self-reported mentally 
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healthy/unhealthy groups (from MCS score); (2) how accurately we can classify the groups 

from the data; and (3) how the data collected objectively with mobile phones and wearable 

sensors compare to the data collected subjectively by questionnaires or surveys.

II. DATA COLLECTION

Sixty-six undergraduate students participated in a 30-day experiment (47 males, 19 females, 

average age=20.1 ± 1.5, mean±SD) providing 1,980 days of data. Participants were recruited 

through email. Prior to the experiment, participants filled out the Pittsburgh Sleep Quality 

Index (PSQI) [22], the Big Five Inventory Personality Test [23], the Horne-Ostberg 

Morningness-Eveningness Questionnaire (MEQ) [24], the Perceived Stress Scale (PSS) [25] 

and the SF-12 Physical and Mental Health Composite Scale (MCS for mental health) [26]. 

During the 30-day experiment, participants wore a wrist sensor on their dominant hand (Q-

sensor, Affectiva, USA) to measure three-axis accelerometer data (ACC), skin temperature 

(ST) and skin conductance (SC, a measure of sympathetic nervous system activity) at 8 Hz 

and a wrist actigraphy monitor on their non-dominant hand (MotionLogger, AMI, USA) to 

measure activity and light exposure levels. Participants also installed an Android phone 

application adapted by the first author from the funf open source framework [27] to measure 

call, SMS, location, internet usage and “screen on” timing. During the study period, they 

filled out surveys every morning and evening about academic, extracurricular, and exercise 

activities, sleep, caffeinated drink intake, social interaction, and self-reported general health, 

mood, alertness, tiredness and stress level. At the end of the study, they filled out the PSS, 

State-Trait Anxiety Index [28] and SF-12. Grade point average (GPA) was reported by the 

participants at the end of the semester in which the experiment occurred. Email usage during 

the experiment (to, from, cc and timestamps) was collected through the MIT website 

Immersion at the end of the study [29]. In addition, based on their call, SMS and email 

usage during the experiment, participants were asked to characterize the interactions with 

their frequent contacts. The Massachusetts Institute of Technology Committee On the Use of 

Humans as Experimental Subjects pre-approved this study and all participants gave 

informed consent.

Sleep/wake onsets were determined by a combination of wrist actigraphy and sleep diaries. 

We computed sleep regularity as a value of 0 – 1 based on the likelihood of sleep/wake state 

being the same time-points 24 hours apart, because sleep researchers have pointed out the 

importance of this sleep regularity measure [30] in addition to sleep duration.

We collected phone and email usage for two main reasons: First, lighting from the 

interaction with mobile phones or emailing late at night could disturb the biological 

circadian clock and increase alertness, both of which can influence sleep patterns [31, 32]. 

Second, phone and email usage and location data give clues to sociability. The timing of 

calls, SMS, emails and “screen on” provide an estimate of how often participants interact 

with their phone during the day and the night, while the number of calls, SMS and emails 

and the number of people they interact with helps quantify their social interaction. For phone 

and SMS features, we computed the entropy p as

Sano et al. Page 3

Int Conf Wearable Implant Body Sens Netw. Author manuscript; available in PMC 2017 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(1)

where n is the frequency of phone calls or messages for each telephone number

Skin conductance (SC) was measured because it represents autonomic arousal during the 

day and provides a stress index; its responses during sleep are highly likely to occur in either 

non-REM Stage 2 sleep or Slow Wave Sleep, and help to characterize sleep better than using 

only acceleration data from actigraphy [33]. Skin temperature also helps to understand sleep/

wake patterns [34], while acceleration helps show activity and sleep patterns. We 

hypothesize that physiology combined with daily behavior data can be used to predict 

aspects of sleep behaviors, academic performance, and self-reported stress and mental health 

better than any of these measures alone.

III. ANALYSIS

A. Feature Extraction

Table 1 shows 700 features extracted from the collected data. For the classification of 

high/low GPA, PSQI, PSS, and mental health condition (MCS), we used features computed 

from month-long data. SC was processed first by low-pass filtering (cutoff frequency 0.4 Hz, 

32nd order FIR filter). Since there are individual differences in SC amplitude, we 

normalized SC data based on the maximum and minimum amplitude of each day within 

each individual. To detect SC peaks, we obtained the first derivative of the low pass filtered 

non-normalized SC data, and then determined where the slope exceeds a value of 0.02 μS 

per second. We detected SC “peaks” based on those that exceeded this threshold and 

counted the number of peaks per each 30-second epoch. The SC peaks during sleep provide 

an index of deeper sleep stages (SWS and NREM2) [33]. For ACC, we computed the mean 

activity level based on the root square values of the 3-axis accelerometer. For ACC data in 

wakefulness, we separated the data into sit, walk and run episodes based on thresholds we 

computed with another set of ACC data from 48 people who did sitting, walking and 

running with the same sensor on their non-dominant wrist. We used these thresholds to 

compute SC features for sit, walk, and run episodes in order to separate SC responses into 

psychological and activity-related ones. In our previous paper [6], we only extracted mean, 

median and SD of the whole day’s ACC and SC data and lost rich information behind the 

data. In this paper, to capture subtle changes in ACC, SC and TEMP patterns, we added 

more detailed features from histograms and power spectrum density data of each signal.

B. Classification of long-term profile using one month data

From GPA, PSQI, PSS and MCS from SF-12, we defined the top 20% and the bottom 20% 

of the participants as high/low GPA groups, good/poor sleepers, high/low stress groups and 

mentally healthy/unhealthy groups. The distribution of the scores is illustrated in Figure 1. 

GPA is the weighted average of grades by credits of classes in the semester of the study and 

ranges from 2.0(D) to 5.0(A). PSQI is a standardized survey to evaluate sleep patterns and 

quality, and differentiates good and poor sleep quality by measuring subjective sleep quality, 
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sleep latency, sleep duration, habitual sleep efficiency, sleep disturbances, use of sleep 

medication, and daytime dysfunction over the last month with 18 questions. A PSQI score 

above 5 was considered as poor sleep quality [22]. PSS is a score from 0 to 40 and higher 

scores mean high perceived stress. MCS is computed using the scores of twelve questions 

(SF-12) and ranges from 0 to 100, where a zero score indicates the lowest level and 100 

indicates the highest level of mental health measured by the scales [26].

We first applied sequential forward feature selection to find the best combinations of 1–3 

features for each modality: 1) Surveys (all the pre-, morning and evening surveys that 

weren’t also part of what we were predicting, were used except for personality and social 

interaction questions, which are used separately below; for PSS classification, we also 

excluded pre and post study MCS since some of the questions were similar about stress; for 

MCS classification, we also excluded pre- and post-PSS because of the similar questions) 2) 

Personality (scores from Big Five Test) 3) SC 4) ACC 5) ST 6) CALL 7) SMS 8) SCREEN 

9) MOB 10) Internet 11) Email 12) Social (features from social interaction questions in 

post-study surveys). We then compared how these features performed using two different 

classifiers: Support vector machine (SVM) with a linear kernel and SVM with a radial basis 

function kernel.

For each classification, we examined the accuracy using leave-one-participant-out approach. 

We selected features and trained models from all except one participant data and tested the 

model against the left-out participant’s data. This procedure was repeated for 26–28 

participants (40 % of the entire participants).

IV. Results and discussions

Figure 2 shows classification accuracies from each modality, taken across the runs of the 

SVM-L or SVM-RBF, whichever was best. Table 2 shows the top performing 1–3 selected 

features, used to obtain the results in Fig 2. Of the items measured by surveys, higher GPA 

was related to longer total hours of academic activities and lower PSQI or earlier wake time. 

PSQI and agreeableness we found related to academic performance in our data are the 

factors previously reported [11, 12]. Good/poor PSQI groups were best classified using PSS, 

daily subjective measures of healthiness and sleep regularity [30] which is a relatively new 

measure that is not captured by PSQI’s metrics. Poor sleepers showed high PSS, low 

healthiness and low sleep regularity. The relationship between poor sleep quality and high 

stress level has been previously reported so this finding is a replication in a new group of 

college students [35, 36]. High PSS groups showed subjective low happiness, high 

sluggishness and high sickness. The mentally healthy group showed high happiness and low 

stress level.

Surveys and personality types contributed more to accurately classifying groups of high/low 

PSS and high/low MCS than they did to high/low GPA and high/low PSQI. Higher 

neuroticism is a common factor associated with worse scores on PSQI, PSS and MCS. Using 

personality information alone was more than 80% accurate at classifying high/low PSQI, 

PSS, and MCS.
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Wearable features yielded higher classification accuracies for high/low PSS, PSQI and MCS 

groups than phone features. For predicting high/low GPA, ACC solo features from the 

wearable showed higher accuracies than all features from the wearable; however, the 

combination of features from the phone boosted the overall high/low GPA classification 

accuracy. The high GPA group showed earlier mean call timestamps and low entropy.

We found some interesting results related to late night phone usage. The poor sleep quality 

group showed longer 3–6am screen on duration and shorter 9am–12pm duration. The high 

stress group and the mentally unhealthy group used SMS less frequently but showed later 

mean timestamp.

Social features during the daytime and right before sleep played also important roles. For 

example, it is surprising that the high GPA group showed higher number of negative email 

contacts and negative interactions. The high stress and mentally unhealthy group showed 

higher frequency of interaction with person before sleep.

Future work will further analyze the data in order to interpret the physiological or behavioral 

meaning as to why specific features from wearable sensors and mobile phones were selected 

by the algorithms and what they imply in terms of recommending healthy behavioral 

choices. Wearable sensors capture mainly how we move, sleep and exercise, while phones 

capture mainly how we communicate with others. We found that detailed SC, ST and ACC 

features contributed more accuracy than mobile phone features toward classifying the 

high/low PSS, PSQI and MCS groups. Complex physiological and behavioral patterns are 

embedded in daily behaviors and feature selection and machine learning techniques unveiled 

subtle differences in the groups we tried to classify. Future work will delve more deeply into 

what these features suggest in terms of making healthier daily decisions. This work provides 

a significant first step showing that objective wearable and mobile data carry information 

that might be used by individuals in order to make better predictions about the impact of 

behavioral choices on GPA, sleep, stress, and mental health.
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Fig. 1. 
Distribution of GPA, PSQI, PSS, and MCS from 66 participants
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Fig. 2. 
Classification accuracies for GPA, PSQI, PSS and MCS
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TABLE I

Computed Features

Pre Experiment Survey (15 
features)

PSS score (about the past month), regular bedtime, wakeup time, duration, PSQI score, MEQ, State and Trait 
Anxiety Score, Big Five Test (Openness, Conscientiousness, Extraversion, Agreeableness, Neuroticism), 
physical and mental health composite scores (PCS and MCS) from SF-12

Morning survey (17 features)

Sleep time, wake time, sleep latency, sleep regularity, social interactions before sleep (with person in person 
or through electronic devices), how they wake up (alarm or spontaneously), the number of awakenings, 
duration of awakenings, the number of naps, duration of naps, alertness, happiness, sluggishness, healthiness 
and calmness when wake up

Evening survey (12 features) Total hours of academic, exercise, and extracurricular activities, the number of cups of caffetinated drinks, 
existence of memorable positive and negative and very negative social interactions, alertness, happiness, 
sluggishness healthiness and calmness before sleep

Post-Experiment Survey (23 
features)

PSS score, PCS and MCS from SF-12, social interactions about the past one month (# of the top 20 people to 
interact through face to face, email, SMS and phone, total # of people with positive, neutral and negative 
interactions, # of family members, friends, work-related colleagues each participant interacted frequently in 
the past one month)

Wearable sensor (SC) (297 
features)

Mean, median, SD, frequency (11 bins) and power spectral density (5 bins) of normalized EDA for day time, 
sit, walk run, entire sleep and 1–4 quarters of sleep
Frequency (11 bins), percentage of SC peaks, and entropies of # of SC peaks and SC storms, for day time, 
sit, walk, run entire sleep, and 1–4 quarters of sleep

Wearable sensor (ACC) (174 
features)

Mean % of sit, walk and run activities per day, mean, median and SD of RMS values, frequency (11 bins) 
and power spectral density (5 bins) of RMS values for day time, sit, walk, run, entire sleep, and 1–4 quarters 
of sleep, mean objective sleep quality from actigraphy

Wearable sensor (ST) (114 
features)

Mean, median, SD, frequency (11 bins) and power spectral density (5 bins) of normalized skin temperature 
for day time, entire sleep and 1–4 quarters of sleep

Phone (CALL) (12 features) Time of each call, duration for each call, total # of people and entropy, for each of: all calls, incoming and 
outgoing calls

Phone (SMS) (12 features) Time of each SMS message, total # of SMS messages, total # of people and entropy for each of: all, received 
and sent SMS

Phone (Screen on/off) (10 
features)

Time of each screen on/off, total # of screen on/off, total duration of screen on between 0–3am, 3–6am, 6–
9am, 9am–12pm, 12–3pm, 3–6pm, 6–9pm and 9pm–0am

Phone (MOB: mobility) (2 
features)

Total distance per day and standard deviation of the distance

Phone (Internet) (2 features) Time, total duration

Email (10 features) Total # of sent emails, mean and SD of # of daily received/sent emails, # of people to send emails, mean and 
SD of timestamps of received and sent emails
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TABLE II

Selected features*

Outcome High vs Low GPA High vs Low 
PSQI score

High vs Low PSS High vs Low MCS

Features

Surveys**

PSQI + Total hours of academic 
activity (n=15), wake time + Total 
hours of academic activity (n=13)

PSS score (pre-
study), Sleep 
regularity, 
Sickness 
(evening)

Happiness 
(morning) + 
Sluggishness 
(evening) (n=15), 
Sluggishness 
(morning) + 
Sickness (evening) 
(n=13)

Happiness (evening), Stress level (evening)

Personality

Conscientiousness, Agreeableness Neuroticism Neuroticism, 
Openness + 
Agreeableness 
(n=15), 
Conscientiousness 
+ Extraversion 
(n=13)

Openness, Conscientiousness, Neuroticism

SC

2Q sleep amp frequency (0.7–0.8) Day mean + sit 
amp frequency 
(0.2–0.3) + 4Q 
sleep amp 
frequency (0.5–
0.6) (n=15), 
run amp 
median + 1Q 
sleep amp 
frequency (0.3–
0.4) + Entropy 
of walk storm 
(n=13)

Sit amp frequency 
(0.9–1.0), storm 
entropy(n=15), 3Q 
sleep amplitude 
frequency (0.6–0.7) 
(n=13)

SD of sit amplitude (n=15), amp frequency 
(0.8–0.9) (n=13)

ACC

Day SD, Day RMS frequency (2–3) 
+ 4Q sleep (2–4) (n=13), Day RMS 
frequency (3–4) + whole night 
sleep RMS frequency (14–16) 
(n=15)

Day RMS 
frequency(2–3) 
+ Walk RMS 
median (n=15), 
Walk RMS 
frequency(10) 
+ 3Q sleep 
frequency (2–
3) (n=13)

1Q sleep frequency 
(18–20) + 2Q sleep 
frequency (0–2) 
(n=15), 2Q sleep 
mean + 3Q sleep 
median (n=13)

Day RMS frequency (2) + Day PSD (1–2 
Hz) (n=15), 3Q sleep frequency (5) + 4Q 
sleep frequency (10) (n=13)

ST

Day frequency (0.9–1) + 1Q sleep 
mean (n=13), 4Q sleep frequency 
(0.3–0.4) + 4Q sleep 
frequency(0.9–1) (n=15)

Day PSD (0.2–
0.3Hz), 1Q 
sleep frequency 
(0.6–0.7) 
(n=13), 3Q 
Sleep 
frequency (0.9–
1.0) (n=15), 4Q 
sleep SD

1Q sleep 
frequency(0.8–0.9), 
2Q sleep frequency 
(0.7–0.8) + 4Q 
sleep frequency 
(0.3–0.4) (n=15), 
3Q sleep PSD(4) 
+ 1Q sleep 
frequency (0.3–0.4) 
(n=13)

Day frequency (0.1–0.2) + sleep frequency 
(0.1) + 1Q sleep mean (n=13), 1Q sleep 
frequency (0.3–0.4) + 1Q sleep frequency 
(0.9–1.0) + 3Q frequency(0–0.1) (n=15)

CALL

Mean timestamp (n=14), entropy 
(n=12)

Mean 
timestamp, 
total duration

Entropy and # of 
people

Entropy + total duration (n=14), Entropy + 
mean timestamp (n=12)

SMS

Mean timestamp + entropy # of SMS 
(n=15), mean 
timestamp 
(n=13)

# of SMS (n=15), 
mean timestamp 
(n=13)

# of SMS (n=13), timestamp (n=14)

SCREEN

# of screen on, 6–9am duration, 
3am–6am (n=12), 9pm–12pm 
duration (n=14)

3–6am duration 
(n=13), 9am–
12pm duration 
(n=15)

6pm–9pm duration, 
3–6am duration 
+ 9am–12pm 
duration (n=15), 6–
9am duration + 

0am–3am duration + 6am–9am duration 
(n=13), total duration + 6am–9am duration 
(n=14)
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Outcome High vs Low GPA High vs Low 
PSQI score

High vs Low PSS High vs Low MCS

Features

mean timestamp 
(n=13)

MOB

SD of daily 
distance 
traveled

Daily distance 
traveled, SD of 
daily distance 
traveled

Daily distance traveled

INTERNET
Timestamp Timestamp and 

total duration
Timestamp and total 
duration

Timestamp and total duration

Email

# of contacts over sent emails, 
median timestamp for received 
emails

SD of 
timestamp for 
sent emails

Median of # of 
received emails, SD 
of timestamp for 
sent emails

Median of # of received emails (n=14), SD 
of sent emails (n=13), median of timestamp 
for received emails

Social

Total # of negative email contacts 
(n=12), Frequency of very negative 
interactions (n=14)

Frequency of 
memorable 
positive (n=12) 
and # of family 
contacts (n=14)

Frequency of 
interaction with 
person before sleep

Frequency of interaction with person before 
sleep, Face to face neutral interaction 
(n=12), total # of neutral contacts(n=14)

*
Numbers in brackets means the number of participants who showed the combination of the features as the best features.

**
Outcome variables were never included as inputs: For high/low PSQI classification, we excluded all PSQI questions, etc. Also, for high/low PSS 

classification, we excluded both PSS and pre and post study MCS questions since some of the MCS questions were about stress; similarly for MCS 
classification, we also excluded pre- and post-PSS questions because of similarity to outputs being classified.
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