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ABSTRACT
Epilepsy affects over three million Americans of all ages. Despite
recent advances, more than 20% of individuals with epilepsy never
achieve adequate control of their seizures. The use of a small,
portable, non-invasive seizure monitor could benefit these individu-
als tremendously. However, in order for such a device to be suitable
for long-term wear, it must be both comfortable and lightweight.

Typical state-of-the-art non-invasive seizure onset detection al-
gorithms require 21 scalp electrodes to be placed on the head. These
electrodes are used to generate 18 data streams, called channels.
The large number of electrodes is inconvenient for the patient and
processing 18 channels can consume a considerable amount of en-
ergy, a problem for a battery-powered device.

In this paper, we describe an automated way to construct de-
tectors that use fewer channels, and thus fewer electrodes. Start-
ing from an existing technique for constructing 18 channel patient-
specific detectors, we use machine learning to automatically con-
struct reduced channel detectors. We evaluate our algorithm on
data from 16 patients used in an earlier study. On average, our
algorithm reduced the number of channels from 18 to 4.6 while de-
creasing the mean fraction of seizure onsets detected from 99% to
97%. For 12 out of the 16 patients, there was no degradation in the
detection rate. While the average detection latency increased from
7.8 s to 11.2 s, the average rate of false alarms per hour decreased
from 0.35 to 0.19.

We also describe a prototype implementation of a single channel
EEG monitoring device built using off-the-shelf components, and
use this implementation to derive an energy consumption model.
Using fewer channels reduced the average energy consumption by
69%, which amounts to a 3.3× increase in battery lifetime.

Finally, we show how additional energy savings can be realized
by using a low-power screening detector to rule out segments of
data that are obviously not seizures. Though this technique does not
reduce the number of electrodes needed, it does reduce the energy
consumption by an additional 16%.
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1. INTRODUCTION
Epilepsy is a relatively common chronic neurological disorder

characterized by recurrent unprovoked seizures. Epilepsy affects
over three million Americans of all ages, at an estimated annual
cost of $12.5 billion in direct and indirect costs. Despite recent ad-
vances in the management of epilepsy, more than 20% of individ-
uals with epilepsy never achieve adequate control of their seizures
[24]. A portable, non-invasive seizure monitor could benefit these
individuals tremendously. For instance, it could be used to alert pa-
tients or caregivers of seizure onset before symptoms of the seizure
cause injury [31]. In addition, an ambulatory seizure onset moni-
tor could be used to automatically initiate delivery of a therapy to
reduce both seizure intensity and duration [33]. Both applications
require timely detection of seizure onset.

Seizure onset is defined as the point in time where a patient’s
EEG transitions from a non-ictal state to an ictal state. A seizure
is the period in time following this event and typically lasts from
one to two minutes. Note that the baseline EEG signals of a person
with epilepsy are considerably different from the EEG signals of a
person who does not have epilepsy [23]. Even among patients with
epilepsy, the amplitude, spectral content, and spatial distribution of
EEG signals can vary during both seizure and non-seizure periods.

Two key issues in designing an ambulatory seizure onset mon-
itor are patient comfort and convenience. Several factors have an
impact on these issues including:

(a) Number of electrodes. State-of-the-art seizure onset detection
algorithms require 21 scalp electrodes to be placed on a pa-
tient’s head to acquire EEG signals. The electrodes are used to
generate 18 data streams called channels. Reducing the num-
ber of electrodes will help to improve the long-term wearability
of a seizure monitor.

(b) Number of wires. Using wires to connect sensing components
to computation components is cumbersome for a patient to
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wear. The use of a small number of wireless integrated, small
and lightweight devices is likely to be more comfortable.

(c) Electrode interface. Current electrodes used for scalp EEG
monitoring require the use of electroconductive gel to provide a
low impedance interface between the electrode and the surface
of the patient’s scalp. Wearing gel electrodes for a prolonged
period of time is uncomfortable. One potential way to miti-
gate this problem is to use dry electrodes [18]. However, since
dry electrodes are larger in size (≈ 2.5 cm in diameter) than
conventional electrodes (≈ 0.5 cm in diameter), they may be
uncomfortable for weight or size reasons.

(d) Device weight. Since the device is designed to be worn on the
head, the weight of the overall device should be minimized as
much as possible.

In this paper, we focus on the problem of channel reduction. We
present a machine learning based algorithm to construct reduced
channel seizure onset detectors. Starting from an existing algorithm
for constructing 18 channel patient-specific detectors, we use our
technique to build reduced channel detectors. While using fewer
channels will improve wearability and reduce energy consumption
and device weight, the potential downside is that detection perfor-
mance may degrade.

To select channels, we use an instance of the wrapper ap-
proach [13], a feature selection technique. Because EEG signals
can vary considerably among patients with epilepsy, a patient-
specific seizure onset detector trained using data from a single
patient tends to have better specificity and sensitivity than a non-
patient specific detector [27]. Thus, for selecting a channel subset
for seizure onset detection, we elected to use our technique on each
patient separately.

Using our approach, we reduced the average number of channels
needed to detect seizure onset from 18 to 4.6. For 12 out of the
16 patients, the subset method detected all of the seizures detected
by the original method. When we ran these detectors on recorded
EEG data, we observed only a small degradation in performance as
compared to the original 18-channel detector. The mean fraction of
seizures detected decreased slightly from 99% to 97%. While the
average detection latency increased slightly from 7.8 s to 11.2 s,
the average number of false events per hour decreased from 0.35 to
0.19.

We also describe a prototype implementation of a single chan-
nel EEG monitoring device built using off-the-shelf components.
Using this implementation, we derived a model that was used to
evaluate the energy consumed by our detectors. By using fewer
channels, our algorithm reduced the energy consumption by an av-
erage of 69%, which amounts to an increase in battery lifetime of
3.3×.

Finally, we show how to further reduce energy consumption by
adding a screening detector to the reduced channel detector. By
reusing the wrapper approach, we constructed a patient-specific
screening detector for each patient. The combination of the patient-
specific screening detector with the original reduced channel detec-
tor consumes 16% less energy while decreasing the percentage of
seizures detected by only 1%.

2. DEFINITIONS
To clarify the terminology used in this paper, we provide some

definitions for a number of key terms and performance metrics.

• window: Two seconds of consecutively sampled EEG data.
Consecutive windows have a one second overlap.

• false negative rate: The false negative rate refers to the frac-
tion of true positive windows, as labeled by a human expert,
that are misclassified as negative windows.

• false positive rate: The false positive rate refers to the frac-
tion of true negative windows that are misclassified as posi-
tive windows.

• seizure onset declaration: The onset of a seizure is declared
when four consecutive windows are labeled positive by the
detector.

• fraction of seizure onsets detected: The fraction of seizure
onsets detected is the number of seizures correctly declared
over the total number of seizures present in a recording. Note
that a high false negative rate may not necessarily translate
into a low fraction of seizures detected.

• false events per hour (false alarm rate): If a seizure onset
declaration is made during a period that does not contain an
actual seizure, we call this declaration a false alarm or false
event. This method of counting false events is quite conser-
vative as we would treat two runs of four positive windows
separated by a single negative window as two events. Note
that a high false positive rate may not necessarily result in a
high false alarm rate.

• detection latency: The detection latency is the difference in
time between when a detection algorithm declares seizure
onset and the electrographic onset time of the seizure as
marked by a human expert. Since a minimum of four consec-
utive positive windows needs to be found before a seizure is
declared, the minimum latency is five seconds since the win-
dows are two seconds in duration and overlap by one second.
If we were to allow fewer consecutive positive windows be-
fore an event could be declared, the detection latency would
decrease. However, this would probably increase the false
alarm rate.

3. BASELINE ALGORITHM
In a standard EEG acquisition system, data is collected from

scalp electrodes arranged as shown in Figure 1. Various re-
searchers [28, 22] have used machine learning to construct algo-
rithms to detect seizures from data collected using this montage.
Using data collected from a specific patient, a detection algorithm
is trained and then deployed for in-hospital real-time seizure detec-
tion. In [28], the authors show how this algorithm could be used
to initiate a delay-sensitive functional neuroimaging procedure fol-
lowing the detection of the electrical onset of a seizure.

Shoeb et al. [28] use a support vector machine (SVM) [6] based
classifier to determine whether an observed two second EEG win-
dow resembles an individual’s non-seizure EEG or one of their
seizure onset events. First, the detector passes a window from each
of the 18 channels to a feature extractor. For each channel, the
feature extractor assembles a feature vector whose seven elements
correspond to the energies in seven overlapping frequency bands.
The features from all channels are concatenated to form a 126 di-
mensional feature vector which is then assigned to the seizure or
non-seizure class using an SVM classifier trained to differentiate
between a patient’s EEG containing seizure onset activity and EEG
containing non-seizure activity. Epileptiform activity lasting more
than four seconds is taken to indicate the start of a seizure. This
classifier was able to achieve high specificity, high sensitivity and
low detection latency for many of the patients in the study. We use
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Figure 1: The 10/20 montage arrangement of scalp electrodes
used for EEG monitoring. A channel is formed by measuring
the difference between two adjacent electrodes (e.g. P7-O1).

this detector’s performance and energy consumption as the baseline
for comparison purposes.

The energy consumption of this algorithm was measured by
Shoeb et al. in a subsequent paper [29]. However, the detector was
implemented on a 32-bit floating point processor (TMS320C6711)
operating at 150 MHz and consumed 2.5 W. A system that has such
high energy consumption is not suitable for long-term ambulatory
EEG monitoring.

4. SYSTEM OVERVIEW
In sensor-based detection algorithms, a sensor first converts a

physical phenomenon into an electrical signal. A filtered version
of the signal is then converted into digital samples. Often, sam-
ples are grouped to form windows that may overlap. Features are
then extracted from the samples and are analyzed to produce a se-
quence of labels—each label indicates whether the features satisfy
a specific set of criteria. For seizure onset detection, features corre-
sponding to windows are labeled as containing seizure onset activ-
ity or not. We consider two basic architectures for implementing a
seizure onset detector. Depending on the processing requirements
of the detection algorithm, one architecture may be more suitable
than the other.

Figure 2(a) shows a block diagram of an on-head architecture.
The system is composed of an EEG data acquisition block that
includes circuitry to amplify and filter the µV EEG signals. An
analog-to-digital converter (ADC) converts each channel into digi-
tal samples. A microcontroller or DSP is then used to analyze the
EEG channels in real-time using a patient-specific seizure onset de-
tection algorithm. To perform detection in real-time, all operations
must be complete before the next window of data arrives. When
the onset of a seizure is detected, a message is sent to a remote
device using a wireless radio to issue an alert to the patient or to
initiate a therapy. Because the rate of seizures is fairly low (fewer
than one per day for most patients), the use of the radio will be
rare. Therefore, in this architecture, the predominant energy cost is
in collecting and processing the data.

Figure 2(b) shows a diagram of an off-head architecture. This
implementation includes circuitry to collect and sample the data,
but no feature extraction or detection is performed locally. Instead,
all the data is transmitted to a remote device where more compu-

RADIODSP/MCUADCAMPLIFIERS

extract
features label alertdata

acquisition

(a) on-head Architecture

RADIO TXDSP/MCUADCAMPLIFIERS

packetize stream
data

data
acquisition

I/ODSP/MCU

extract
features label alert

RADIO RX

stream
data

(b) off-head Architecture

Figure 2: A mobile seizure onset detection system can be real-
ized as one of two different architectures.

tation and energy resources are available. In this architecture, the
predominant energy cost is in transmitting the data.

4.1 Prototype description
To understand the energy consumption of a mobile seizure onset

detection system, we built a single channel EEG acquisition system
using off-the-shelf components and measured the power consump-
tion of the components using an oscilloscope. The prototype trans-
mits acquired data to another device where final classifications can
be performed. Thus, our prototype is an instance of the off-head
architecture. While the system is capable of acquiring data from
more channels, for the purposes of developing an energy model,
building a single channel acquisition system is sufficient. Since the
system is designed for wearable monitoring, we made an effort to
select low-power, lightweight components.

To initially amplify the EEG signal, we selected the Texas Instru-
ments INA333 low-noise, low-power instrumentation op-amp and
an anti-aliasing filter. Because EEG signals have a peak-to-peak
amplitude of a few µV, a gain of approximately 1000 is applied
to the signal. After the signal is properly filtered, it is sampled
at 200 samples per second using the on-board 12-bit analog-to-
digital converter (ADC) of a microcontroller, the Texas Instruments
MSP430FG4618 [19], operating at 8 MHz at 3.0 V. In general, the
interesting frequency range for scalp EEG is 0 to 150 Hz, but for de-
tecting seizure onset, the maximum frequency of interest is around
75 Hz.

At the ADC, we truncate each sample to 8 bits. Once a full sec-
ond’s worth of data has been collected, i.e., 200 bytes, the data is
split into 50 byte packets and delivered to a CC2500 transceiver [4],
which operates at 2.4 GHz. The data is split because the size of the
transmit and receive FIFOs in the radio is 64 bytes. Along with the
payload data, an 8-bit sequence number is included to help with
detecting packet loss and ordering the incoming packets. Data is
transmitted at 250 kbps using minimum shift-key (MSK) modula-
tion and forward error correction. The prototype system is shown
in Figure 3(a).

In our prototype, the data is delivered to a desktop computer via
the EZ430-RF2500 module from Texas Instruments, which con-
sists of a CC2500 transceiver as well as another MSP430 as shown
in Figure 3(b). The prototype is powered by 2 AAA batteries as

349



(a) Acquisition hardware

(b) EZ430-RF2500 module

Figure 3: Prototype single channel EEG acquisition system.
The EZ430-RF2500 module receives the data from the acqui-
sition hardware. It is also connected to a PC where the data
can be analyzed.

shown in Figure 4. The module stores a full second’s worth of data
before sending the data via a USB serial port to the desktop com-
puter. In an actual deployment, the data would be transmitted to a
device located at the patient’s belt.

4.2 Energy model
Using an oscilloscope, we measured the energy consumption of

the three main components of our system: the data acquisition cir-
cuit, the processor, and the radio. In our prototype, the data acqui-
sition circuit remains fully powered at all times. Duty cycling the
front-end is possible, however, aggressive duty cycling may lead to
data corruption. When powered on, the data acquisition circuit has
a current consumption of 100 µA at 3.0 V. The energy consumed
to acquire Nc channels of data can be modeled as

Esample = Nc(P
(on)
sensorT

(on)
sensor) (1)

where T (on)
sensor is the time the data acquisition unit is active.

As mentioned, the signal is collected at 200 samples per second
using the on-board ADC of the MSP430. Since we configured the
ADC to use an on-board timer clocked by the SMCLK signal to
trigger conversions, we can place the CPU into Low Power Mode
0 (LPM0) only during idle periods, otherwise, the ADC will not
function properly. Sampling a single EEG channel can be accom-
plished by operating the ADC in single-channel, repeated conver-
sions mode; multiple channels can be sampled by using the ADC
in multiple-channel, repeated conversions mode. Doing so will in-
crease the on-time of the ADC, but the increase will have a negligi-
ble impact on the energy consumption because power consumed by
the ADC is small compared to the CPU operating in LPM0 mode.

The energy consumed by the MSP430 can be approximated as:

ECPU = P
(on)
CPU T

(on)
CPU + P

(idle)
CPU T

(idle)
CPU .

Figure 4: Battery pack used by the MSP430 Experimenter’s
Board. The MSP430 Experimenter’s Board uses 2 AAA bat-
teries.

Figure 5: A trace of the power consumed by the CC2500 dur-
ing radio transmission of a single channel collected over a one
second window. The total amount of payload data is 200 bytes.
Because of the limited size of the CC2500 transmit FIFO, we
transmit 50 bytes at a time.

T
(on)
CPU and T (idle)

CPU are the durations for which the CPU is active and
idle respectively. In our system, the CPU is activated once per sec-
ond. Thus, in a one second period, the CPU is idle for 1 − T (on)

CPU
seconds. The CPU is only active when data needs to be transmit-
ted. If Tactive is the duration of time that the radio needs to be active
in order to send one channel’s worth of data for Nc channels, the
energy consumed in one second can be written written as:

ECPU = P
(on)
CPU (NcTactive) + P

(idle)
CPU (1−NcTactive). (2)

To transmit data to a nearby remote device (e.g., on the belt),
we use the CC2500 [4] transceiver. Figure 5 shows a trace of the
radio sending 200 bytes of data. There are several things to note.
First, the transmission of each 50 byte packet takes about 3.7 ms.
We pause 800 µs between each packet to give the receiver a chance
to process the previous packet of data. Also, notice that the radio
transitions between various power states in order to transmit. We
can identify five different power states from the diagram, which we
will call: idle, transmit, listen, wake-up, and transfer. The operation
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of the radio in idle, transmit, listen, and wake-up states is obvious.
During the transfer state, data to be transmitted is written to the
transmit FIFO on-board the CC2500. As data from more channels
is sampled, the number of bits to transmit will increase. Thus, we
can model the energy consumed by the radio as:

Eradio =
X
i∈R

P
(i)
radioTradio

= Nc

X
j∈S

P
(j)
radioT

(j)
radio +

X
k∈T

P
(k)
radioT

(k)
radio (3)

where S = {transmit, listen, transfer}, T = {idle,wake-up} and
R = S ∪T . The duration of time the radio spends in the idle mode
in one second is simply one minus the sum of the duration spent in
the other modes.

Table 1 summarizes the values of the parameters of components
used in our prototype system. Our model does not take into account
the energy needed to switch state to state; we believe that this en-
ergy is negligible. Combining Equations (1), (2), and (3), and using
the values in Table 1, we can compute the energy consumed to col-
lect and transmit one second’s worth of data as a function of Nc:

E(Nc) ≈ 1.58 mJ ·Nc + 2.12 mJ. (4)

Therefore, a system that uses 18 channels has a power consump-
tion of 30.6 mW. If we are able to reduce the number of channels
required by a seizure onset detector to one channel, we would con-
sume 3.71 mW, a reduction of 88%. We use this model in the rest
of the paper to evaluate the energy consumption.

One could build a significantly lower power on-head seizure on-
set detection system by using application-specific integrated cir-
cuits (ASIC) as shown by the authors of [32, 2]. The purpose of
building our prototype was not to build the lowest power system
possible, but rather to derive a reasonable energy model for an am-
bulatory seizure onset detection system. We use the derived model
to demonstrate the usefulness of our channel reduction techniques.
Moreover, our techniques are still applicable to ASIC-based sys-
tems.

Reducing the number of channels can improve wearability and
reduce energy consumption, but there are at least two issues left to
address. (a) How should the subset of channels be chosen? (b) Can
a detector built using fewer channels achieve similar levels of speci-
ficity, sensitivity, and latency as those of the baseline detector that
uses all the channels? We attempt to answer these questions in the
rest of the paper.

5. CHANNEL SELECTION
To select channels, we use a feature selection algorithm from

the machine learning literature called the wrapper approach [13].
Since EEG data from each patient during both seizure and non-
seizure periods will differ from the EEG signals of other patients,
we perform feature selection using the wrapper approach on a per
patient basis.

5.1 Wrapper approach
The wrapper approach [13] works by using the performance of

a learned algorithm to assess the usefulness of different subsets of
features. When implementing the wrapper approach, one needs
to decide (a) how to search the space of possible feature subsets,
(b) how to assess the performance of each learned machine to guide
the search, and (c) which learning algorithm to use to select fea-
tures. One advantage of the wrapper approach is that it allows users
to specify an objective function with which to evaluate feature sub-
sets.

1: F ← [1, 2, . . . , n] {Initialize list F to all features}
2: R← [] {R is the list of models}
3: V ← [] {V is a value dictionary indexed by feature}
4: S ← (X, y) {Data on which to test performance}
5: repeat
6: for i← 1 to |F | do
7: A← [] {A stores trained models}
8: for all s ∈ S do
9: F ′ ← F − F [i] {Remove a feature}

10: X ′ ← X(:, F ′) {Select features from data and train}
11: α← Train(X ′, y) {Train classifier}
12: A← [A,α] {Remember model}
13: end for
14: V [i]← J(A,S) {Evaluate objective function J}
15: end for
16: k ← findBest(V ) {Get index of worst feature}
17: R← [R,A[k]] {Store best model}
18: F ← F − F [k] {Remove feature from list}
19: until F = []
20: Output R

Figure 6: Backward elimination algorithm

The simplest search for the best feature subset is an exhaustive
search where a learned machine is built for all feature subsets. Un-
fortunately, for n features, there are 2n − 1 possible subsets. To
train an SVM, a quadratic programming optimization problem is
solved. In our experience, training an SVM for each subset takes 30
to 60 seconds on average. Therefore, for n = 18 channels, build-
ing an SVM for all subsets would take around 90 days assuming a
single CPU. Thus, performing such a search is computationally im-
practical. An alternative is a greedy search. In a greedy approach,
we still use machine learning to build our detectors, but we will de-
cide which subsets to evaluate incrementally. There are two basic
strategies: forward selection or backward elimination. In forward
selection, we incorporate variables incrementally into larger and
larger subsets. In backward elimination, we start with the set of all
features and gradually remove or eliminate the least useful ones.
To evaluate the performance of each feature subset, we use cross
validation.

Figure 6 shows the pseudo-code for the greedy backward elim-
ination algorithm. We assume that there are n total features. Es-
sentially, in each round, we obtain the performance of a subset of
features by training a detector using that subset and running it on
the training data. Each set of features is generated by removing a
different feature with replacement from a set of candidate features.
After the performance of the detector built using each subset of fea-
tures has been determined, we remove the feature that results in the
smallest degradation in performance. Performance is defined by the
user-specified objective function J . We use the training data to help
us evaluate performance. At the same time, we store the detector
that uses the best set of features in R. As a final step, the algorithm
outputs R, a set of detectors that have the best performance for a
given number of features.

We adapted the wrapper approach to select entire channels in-
stead of individual features. Since seven features are extracted per
channel, when a channel is removed, all seven features are removed
from the feature vector. An SVM is trained using the features from
the remaining channels. In the inner loop, we remove each channel
with replacement until all remaining channels have been removed.

After the inner loop is complete, we must decide which of the
detectors to keep before continuing with the algorithm. In this pa-
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Table 1: Measured values for the parameters used in our energy model. The supply voltage for all the components was 3.0 V. The
dominant source of power consumption is the radio during transmit and transfer modes.

EEG sensor P
(on)
sensor sensor power consumption 300 µW @ 3.0 V

MSP430
P

(on)
CPU active power consumption 14 mW @ 8 MHz
P

(idle)
CPU idle power consumption 1.6 mW @ LPM0 mode
Tactive active time 23.2 ms

CC2500

P
(transmit)
radio transmit power consumption 64 mW @ 0 dBm
P

(listen)
radio listen power consumption 4.8 mW
P

(transfer)
radio transfer power consumption 24 mW
P

(wake-up)
radio wake-up power consumption 24 mW
P

(idle)
radio idle power consumption 0.5 mW
T

(transmit)
radio transmit time 14.7 ms
T

(listen)
radio listen time 0.64 ms
T

(transfer)
radio transfer time 3.2 ms
T

(wake-up)
radio wake-up time 0.048 ms

per, we select the detector that has the lowest false positive rate
that correctly detects at least as many seizure onsets as the baseline
detector. If there are no detectors that satisfy the seizure onset de-
tection constraint, we simply pick the detector that has the lowest
false positive rate. The output of the algorithm is a list of learned
detection algorithms that use decreasing numbers of channels to
perform detection. From this list, we then select the single best de-
tection algorithm. For this last step, we retain the detector with the
smallest number of channels instead of the detector with the lowest
false positive rate.

5.2 Other methods
In addition to the wrapper method, there are a number of other

feature selection methods that we could have used [11]. We also
tried and evaluated AdaBoost [9] and SVM Recursive Feature
Elimination [12] for selecting channels. Detectors constructed us-
ing the channels returned by those methods did not perform any
better than the detectors constructed using the channels returned by
the greedy wrapper method.

6. EVALUATION METHODOLOGY
To evaluate our channel selection and detection algorithms, we

used pre-recorded pediatric EEG data from 16 patients collected in
a previous study [27]. All patients were being evaluated for poten-
tial cerebral resection surgery, and had their medications stopped.
Therefore, they had seizures more often than is typical.

Table 2 shows the number of seizures and the number of hours
of EEG data recorded for each patient. The onset and duration of
each of the seizures for each patient was labeled by a human expert.
For each recording, labels for each window can be derived from the
annotations made by the expert.

Those who are unfamiliar with collecting EEG data should be
aware that obtaining a data set of this kind and size is a challenge.
Collecting data from patients with seizures involves finding a neu-
rologist with patients who are willing to participate in a study, ob-
taining Institutional Review Board (IRB) approval, and finally, go-
ing to the hospital to record the data.

6.1 Testing procedure
The EEG data belonging to each patient is organized into con-

secutive, one-hour records. Let N be the number of seizure-free,
one-hour records and M be the number of one-hour records con-
taining one or more seizures for a given patient. For each of the

Table 2: Data from each patient was obtained from a previous
study [27]. The table shows the number of seizures and number
of hours of EEG data recorded for each of the 16 patients.

Patient Id Number of Recording
Seizures Duration (h)

40 24 16.0
25 4 55.0
22 7 43.0
36 3 16.5
10 3 21.3
24 2 56.0
31 5 17.0
38 3 34.8
41 9 32.0
3 5 33.8

12 2 38.0
20 4 28.0
35 7 48.0
43 8 25.0
45 38 25.0
47 19 34.0

patients, we used data from that patient to construct two different
patient-specific classifiers:

(a) original: an SVM-based classifier using 18 channels and

(b) subset: an SVM-based classifier using a subset of the chan-
nels, where the channels are chosen using the wrapper ap-
proach described in Section 5.1.

We used the LIBSVM package [5] to train the SVM classifiers. Af-
ter conducting a grid search using a subset of the patients, we set
C = 10 and γ = 10−2.

When training a classifier for a patient, we input a subset of the
windows from all N of the non-seizure records and windows from
M − 1 of those records containing a seizure into the learning al-
gorithm. We input only a subset of windows for practical reasons
since using all the windows from the non-seizure records for train-
ing is time consuming. Experiments showed that including only
a subset of windows versus including all the windows did not ad-
versely affect the detection performance.

The detector that resulted was then tasked with detecting seizure
onsets in allM seizure record including the record that was left out
from the training set. For each detector, we recorded the follow-
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Table 3: Channels selected for Patient 38 by the wrapper algo-
rithm.

Training subset Test file Channels Selected
A 3 FP1-F7, F7-T7, T8-P8
B 2 FP1-F7, P3-O1, T8-P8, Fz-Cz
C 1 F7-T7, T8-P8, Fz-Cz
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Figure 7: For Patient 38, the average rate of false alarms per
hour is lowered from 0.1 to 0.03. A 0.03 false alarm rate per
hour corresponds to one false alarm every 33 hours.

ing data: (a) the fraction of seizure onsets detected, (b) the number
of falsely declared events per hour of monitoring, (c) the mean de-
tection delay for each seizure in the recording, and (d) the energy
consumption. This process was repeated M times so that each of
the M seizure records was tested once. For each classifier, we ag-
gregated the results from the M runs and reported averages of the
results. To estimate the energy consumed by a classifier for the
entire recording, we used the model developed in Section 4.2.

In our experiments, our primary goal was to determine whether
“good” reduced channel detectors could be constructing using the
approach outlined and to compare the labeling performance and en-
ergy consumption of the original 18 channel detector to the reduced
channel detector.

7. CASE STUDY
In this section, we focus on the results from a single patient (Pa-

tient 38). Patient 38 experienced three seizures over a period of
34.8 hours; thus, we can construct three training subsets. As ex-
plained in the previous section, to construct a training subset, we
included all the windows from two of the seizures and a subset of
windows from the non-seizure data. The testing subset included all
the windows from the seizure data and all the windows from the
non-seizure data. Table 3 shows the channel subsets selected us-
ing the wrapper algorithm. From the table, we see that the wrapper
approach output detectors that use fewer channels than the original
18 channel detector. Moreover, each of the reduced channel de-
tectors detected all the seizures that the original detector detected
in Patient 38’s EEG recording. Figures 7, 8, and 9 show the false
alarm rate, mean detection delay and energy savings achieved by
the subset detection algorithm and original full montage detection
algorithm for Patient 38.

In Figure 7 we see that using fewer channels reduced the rate of
false alarms from an average of 0.1 to 0.03 false events per hour.
A 0.1 false event rate corresponds to a false alarm once every 10
hours, while a 0.03 false event rate corresponds to a false alarm
once every 33 hours. Whether an alarm is real or not, each alarm
will cause emotional distress in a patient as he or she prepares for
clinical onset. A false alarm puts patients in distress unnecessarily
and a high false alarm rate will cause patients to distrust alarms to
the point that they may ignore them altogether. Thus, a low false
alarm rate is critical.
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Figure 8: For Patient 38, the mean detection delay increases
slightly to 6.0 s.
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Figure 9: The energy savings for the different models trained
for Patient 38.

The decrease in the false alarm surprised us; we had not expected
that using fewer channels would reduce the number of false alarms.
Even more surprising is that this result generalized to the other pa-
tients as we will see in Section 8. One explanation for the decrease
is the following. The objective function used to evaluate channel
subsets favors selecting a group of channels that has lower false
positive rates. In particular, the objective function will tend to re-
ject a channel that reliably exhibits epileptiform activity at seizure
onset if that channel exhibits the same activity at other times. If the
rejected channel exhibits this activity earlier than the channels in
the subset, the latency will increase. Figure 8 compares the mean
detection delay of the subset detection algorithm to that of the
original detection algorithm. We see that the mean detection delay
increased from 5.4 s to 6.0 s.

Figure 9 shows the average energy savings achieved by the sub-
set detector assuming the energy model in Equation (4). For this
patient, the energy consumption was reduced by an average of 76%.

We examined the EEG signals during the seizures to determine
if the channels selected had a physiological explanation. Figure 10
illustrates the onset of a recorded seizure from Patient 38. For this
patient, seizures appear to originate on the left-side of the brain.
Seizure onset begins with the appearance of 8 Hz rhythmic activity
most prominently on the left hemispheric channels (the top 8 chan-
nels in the figure; FP1-F7, FP1-T7, T7-P7, P7-O1, FP1-F3, F3-C3,
C3-P3, P3-O1). The onset has been marked with a vertical line.
There is limited, or no, involvement of right hemispheric channels
(the bottom 8 channels in the figure; FP2-F4, F4-C4, C4-P4, P4-
O2, FP2-F8 ,F8-T8, T8-P8, P8-O2). Based on the EEG signals,
the channels selected by the wrapper algorithm were reasonable;
most of the channels selected were from the left hemisphere. In
Table 3, we see that T8-P8 was also selected. During the seizure,
there appears to be no activity on T8-P8, but its inclusion may have
improve the detection rate since T8-P8 was reliably quiet during all
the seizures in the recording.

One potential concern here is that the wrapper algorithm chooses
different channel subsets when different seizure files are left out.
This raises the question of how sensitive the detection performance
is to the choice of channels. To address this question, we performed
the following experiment. We took all the channel subsets reported
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Figure 10: EEG signals of Patient 38 during a seizure. Seizure
onset is denoted by the red line.
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Figure 11: The false event per hour for Patient 38 remains low
even when the channel subsets are changed.

by the detector when a specific file was left out and then trained a
detector using those channels while leaving out a different file. For
example, when we used Files 1 and 2 as the training set, channels
FP1-F7, F7-T7, and T8-P8, were selected. What happens if we
build a detector using those channels while using Files 2 and 3 in
the training set?

After performing this experiment, we determined that the frac-
tion of seizure onsets detected remained at 100% no matter which
files were used for training and which files were left out for test-
ing. Neither the mean detection delay nor average energy savings
changed significantly when different data sets were used for train-
ing.

Figure 11 shows the resulting false alarm rate when the channels
selected using the original training subsets were used to train de-
tectors using data from a different training subset. In all cases, the
false alarm rate remains fairly low. Thus, for this patient, the detec-
tion performance appears to be unaffected when any of the channel
subsets as selected by our algorithm is used to build a detector.

8. RESULTS FOR ALL PATIENTS
The original SVM-based detector detected 99% of the seizure

onsets with an average false alarm rate of 0.35 events per hour and
a mean detection delay of 7.8 seconds. The subset detection al-
gorithm detected 97% of all the seizure onsets while lowering the
average false alarm rate to 0.19 false events per hour. However,
the mean detection delay rose to 11.2 s. Figures 12, 13, and 14
show the detection performance for all the patients. Note that for
12 of the 16 patients, the subset method detected all of the seizures
detected by the original method.

From Figure 13, we see that the decrease in the false alarm
rate that was observed for Patient 38 is also observed in the other
patients. Again, it is likely that the eliminated channels exhib-
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Figure 12: The average fraction of seizures detected decreased
slightly from 99% to 97%. For any one patient, this amounted
to missing at most one seizure for one training subset.
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Figure 13: Using the subset detector lowered the average rate
of false events per hour from 0.35 to 0.19.

ited seizure-like activity during non-seizure periods. By removing
them, the algorithm reduced the false alarm rate.

Figure 15 shows the average number of channels that was se-
lected by the wrapper algorithm for each patient. The large vari-
ation in the mean number of channels across patients can be at-
tributed to the fact that each patient experiences seizures in a differ-
ent way. Moreover, different seizures will originate from different
parts of the brain. Overall, the average number of channels in the
reduced channel detectors was 4.6 channels.

Figure 16 illustrates the average energy savings achieved by the
subset detector for each patient for the off-head architecture. The
algorithm achieved an average savings of 69%.

Our approach effectively reduce overall energy consumption.
Using a reduced channel detector will reduce the amount of data
we need to collect, process, and/or transmit, but what is the im-
pact on battery lifetime? The impact depends on the battery be-
ing used. A number of different types of batteries are available
commercially including lithium-ion (Li-Ion), lithium-polymer (Li-
Poly), alkaline, and nickel-metal hydride (NiMh). In our prototype,
two AAA alkaline batteries are used to power the system. Table 4
shows the energy densities of various common batteries. For the
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Figure 14: The average detection delay increased from 7.8 s to
11.2 s for most patients. For some patients, the increase in delay
may be unacceptable. In those cases, an objective function that
minimizes delay would be more appropriate.
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Figure 15: The average number of channels that the wrapper
algorithm selected was 4.6.

ambulatory seizure onset detection application, the battery is worn
on or near the head, thus, using the lithium-ion coin cell which has
one-third the weight of the other batteries is preferred. Figure 17
shows the lifetime of the system while the number of channels for
the detector is varied. A curve is shown for each of the three bat-
tery types. We have assumed that the batteries do not self-discharge
and can maintain the same voltage level regardless of the remain-
ing battery capacity. Note that the battery is not the only contributor
to the weight, the current single channel prototype weighs approx-
imately 30 to 40 g. However, using off-the-shelf components, a
single channel system including the amplifiers could be reduced to
10 g, which is the weight of the EZ430-RF2500. Thus, reducing
the number of channels will also reduce overall device weight.

9. FURTHER IMPROVEMENTS
We have shown that the wrapper approach can be used to find

subsets of channels with which to build reduced channel detectors
that have high specificity, high sensitivity, and reasonable detec-
tion latency compared to the original 18 channel detector. We can
further reduce the energy consumption of the subset detector by
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Figure 16: The average energy savings achieved by the subset
detection algorithm was 69%.

Table 4: Specifications for some common batteries. The Li-Ion
batteries are rechargeable batteries, while the AAA battery is a
non-rechargeable alkaline battery. For long-term seizure onset
detection where the device is placed on or near the head, the
use of a smaller lightweight battery is preferred.

Li-Ion (phone) AAA Li-Ion (coin)
Weight (g) 24 23 7.8

Capacity (mAh) 850 900 160
Nominal Voltage (V) 3.7 3.0 3.6
Ideal Capacity (kJ) 11.3 9.7 2.1

adding a low-power screening detector in front of the detection
algorithm as suggested by [26]. We hypothesize that non-seizure
onset segments are easier to detect and thus, a less complex, lower
power classifier can be trained to detect those segments. If we can
construct such a detector with a low false negative rate, we can
combine this simpler detector with the original subset detector as
follows.

Initially, the screening detector is used to label each window.
Any segment that the screener labels as non-seizure onset is labeled
negative. Any segment in which the screening detector believes a
seizure is present is forwarded on to the original subset detector.
If the subset detector labels the window positive, it continues to
analyze all future windows until a negative window is found.

Combining the detectors in this way ensures that it will have
no false positives relative to the subset detector. As long as the
power consumption of the screener and the number of false alarms
issued by the screener is low, the combination of the detectors can
decrease energy consumption while maintaining low false positive
and false negative rates.

9.1 Constructing the screener
One way to construct a screener is to build a detector that uses

fewer channels than the subset detector. Conveniently, we can
use the backward elimination algorithm again. To determine which
channels to keep, we use the following objective function: (a) Find
the screening detector that has the lowest number of false nega-
tives, but detects at least as many seizures as the subset detector.
(b) Retain the channels used by that detector. Channels selected by
this approach are used to construct the final SVM-based screening
detector.
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Figure 17: With all 18 channels active, the heavier Li-Ion bat-
tery has an ideal battery lifetime of about 4.3 days. The AAA
battery has an ideal battery lifetime of 3.7 days and the Li-Ion
coin has an ideal battery lifetime of 0.78 days. By reducing the
channels to 4, the battery lifetime increases to 15 days, 13 days
and 2.8 days respectively.

Table 5: Detection performance is unchanged when a screening
algorithm is added.

Average fraction of seizures detected 96%
Mean detection latency (s) 12.1

False events per hour 0.17
Average energy savings 85%

Note that using a screener will not reduce the number of chan-
nels worn by the patient. However, because screening can reduce
the number of channels that are actively processed, the energy con-
sumption of the device will be reduced and thus, the lifetime of the
battery will be extended. Note that in some cases, the algorithm
could not find a set of channels that satisfied our criteria. For pa-
tients where the subset algorithm used only a single channel, we
did not run the screening algorithm.

9.2 Screening results
Table 5 shows the results of adding a screening detector to the

subset algorithm when possible. Notice that no significant change
was observed in the fraction of seizure onsets detected, the average
false alarm rate, or the mean detection latency. However, we were
able to improve the energy savings for some patients. By using the
screening method, we were able to achieve an average energy sav-
ings of 85% over the original 18 channel detector. Figure 18 shows
the additional energy savings achieved for each patient. Figure 19
shows the average number of channels used by the screener for
each patient. The mean number of channels used by the screener
for patients who could be screened was 1.17.

10. DISCUSSION
One concern with the results we have presented is that the

seizures and spatial distribution of the seizures for a patient will
change over time. Thus, the channels selected based on previously
collected data will be irrelevant as time progresses. Unfortunately,
published information about how seizures change over years or
decades is not available. Clinicians generally believe that adults
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Figure 18: The additional energy savings achieved by the com-
bination of the screening detector with the subset detection
algorithm was approximately 16%.

with epilepsy tend to have stable EEGs. In our own clinical studies,
we have successfully used a patient-specific detector trained using
data collected over a year earlier to detect a seizure in real-time.

Another concern is that using scalp electrodes is simply too cum-
bersome for long-term monitoring use. Unfortunately, other meth-
ods of seizure onset detection that do not use EEG electrodes are
more error-prone. For example, one could try to use electromyogra-
phy (EMG), the electrical signals generated by muscle movement,
to detect a seizure. There are several problems with such an ap-
proach. First, not all patients experience strong muscle movement
during seizures. Second, deciding where to place the EMG elec-
trodes will be patient-specific since patients experience seizures in
different ways. Finally, muscle movements that indicate clinical
onset of seizure often lag the initial electrographic seizure onset.
Thus, even if it were possible to detect a seizure as a result of a
change in the EMG signal, the detection latency would likely be
larger.

11. RELATED WORK
Reducing the power consumption of mobile devices and systems

has been well studied by many researchers [14,8,16]. For the most
part, a reduction in energy consumption is achieved through some
form of duty cycling. Deciding when and how frequently to turn
a device off often depends on the application. Typically, the de-
cision to turn devices off is based either on user input or on other
environmental changes. In many previous systems, power savings
is achieved by trading off the performance or fidelity of certain ap-
plications (e.g., a low-resolution image is displayed or a task takes
longer to complete). In this paper, we use software techniques to
select channels in order to reduce energy consumption of seizure
onset detection. However, unlike previous work, for many patients,
we are able to achieve energy savings with only a slight degradation
in the detection performance.

A few researchers have explored the use of feature selection to
reduce the complexity or energy consumption of a detector or clas-
sifier. In [30], the authors use a genetic algorithm to construct a
decision tree where the fitness function takes into account the cost
of performing a test and cost of making classification errors. The
work is evaluated using medical data sets. Energy consumption is
not considered since the medical tests are not intended for real-time
use.
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Figure 19: The average number of channels used in the
screener was 1.17. For some patients, a screener was not needed
since the subset algorithm used only a single channel. For
other patients, the screeners tended to degrade detection accu-
racy on the training data. Thus, we did not use a screener for
those patients.

More recently, Benbasat et al. take into account the energy cost
of sampling various sensors for performing wearable gait monitor-
ing [3]. They describe a framework for automatically generating
power-efficient decision tree classifiers for wearable gait monitor-
ing nodes. Similar to AdaBoost, decision tree learning algorithms
perform embedded feature selection. By modifying the learning
algorithm to take into account energy cost, a tree that is “energy-
aware” can be built. Once a decision tree is constructed, the sys-
tem dynamically consults only the sensors that are necessary to de-
termine the system state. However, because sensors are activated
sequentially over time, the detection latency of such systems will
be greater than those that examine all the data simultaneously. We
have not yet tested the use of a decision tree algorithm for our appli-
cation. However, decision tree classifiers tend to have lower speci-
ficity and sensitivity than SVM-based classifiers. Nevertheless, it
may be worthwhile to compare these methods to ours.

The authors of [20] also explore ways to scale the data or feature
set used by an ECG-based application for use on a mobile device.
The authors show how to use their methods to trade off classifica-
tion accuracy for bandwidth. In particular, they use a feature se-
lection method based on mutual information to “scale” the data set
such that computation is appropriate for a mobile device. Other re-
searchers [10,15] have applied feature selection techniques such as
Recursive Feature Elimination for reducing channels in EEG-based
applications.

The idea of using a lower energy, but lower fidelity device most
of the time is similar to our concept of screening. In [25], the
authors use a low-power radio to receive incoming wake-up mes-
sages. This allows the rest of the device to remain off when the
device is not being used and results in dramatic energy savings.
The use of multiple radios to reduce energy consumption is further
explored by various researchers [21, 1] who use Bluetooth or cell
phone technologies to implement the wake-up mechanism. The
wake-up mechanism is similar to screening in that a higher-power
device is activated only when an incoming message is detected on
the low-power channel.

Similar to wake-on-wireless systems, a number of researchers
have built sensor-based hardware platforms designed to detect rare

and infrequent events [7, 17]. In these systems, the CPU stays in a
very low-power mode and is activated only when a sensor detects
some signal energy.

Previously, we investigated the use of a screener detector to re-
duce energy consumption for the seizure detection problem [26]. In
this paper, we use feature subset selection algorithms for improv-
ing patient comfort and reducing energy consumption. Secondly,
we introduce an energy model based on a real hardware implemen-
tation to determine the change in energy consumption.

12. CONCLUSION
Medical researchers have developed good algorithms for extract-

ing clinically useful information from physiological sensors. In or-
der to deploy these algorithms for wearable medical monitoring,
e.g., for seizure onset detection, the sensors and monitoring de-
vices must be comfortable enough for prolonged wear. To make a
wearable seizure onset monitor more comfortable, both the device
weight and number of scalp electrodes need to be minimized.

In this paper, we described a machine learning-based technique
to automatically construct a reduced channel detector. Starting
from an existing technique for constructing 18 channel patient-
specific detectors, we showed how to use machine learning to auto-
matically construct reduced channel detectors. Reducing the num-
ber of channels improves wearability since fewer electrodes are less
intrusive and are easier to mount. Moreover, reducing the number
of channels also reduces the energy used by the monitoring device
since less data will need to be processed.

Using data from 16 different patients, we automatically con-
structed patient-specific reduced channel seizure detection algo-
rithms and compared their detection performances and energy con-
sumptions to those of the original 18 channel detector. On average,
only 4.6 channels were needed. The detectors were able to detect
97% of all seizures, a degradation of only 2%. For three quarters of
the patients, there was no degradation in the detection rate. While
there was an increase in the average detection delay from 7.8 s to
11.2 s, the average rate of false alarms per hour decreased from
0.35 to 0.19.

We also described a prototype implementation of a single chan-
nel EEG monitoring device built using off-the-shelf components.
Using this implementation, we derived an energy consumption
model which was used to evaluate the energy consumed by our
reduced channel detectors. On average, using fewer channels al-
lowed our system to use 69% less energy than the 18 channel de-
tector. This translates to an increase in battery lifetime of 3.3×.
Finally, we showed how to achieve additional energy savings by
using a screening detector to rule out segments of non-seizure data
at low-cost. While screening does not reduce the number of chan-
nels that need to be worn, it can further reduce energy consumption
by 16% while still detecting 96% of the seizures.

Finally, it is important to note that, while the focus of this paper
is on selecting channels for seizure onset detection, the technique of
selecting a subset of channels can be easily applied to other sensor-
based domains where data from multiple sensors is used to perform
detection. The effectiveness of the algorithm relies on the objective
function chosen. Using an appropriate objective function to select
a subset of sensors can be beneficial if resources such as energy or
bandwidth are limited.
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