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SADHealth: A Personal Mobile Sensing System for
Seasonal Health Monitoring

Liam McNamara and Edith Ngai

Abstract—People’s health, mood, and activities are closely
related to their environment and the seasons. Countries at extreme
latitudes (e.g., Sweden, U.K., and Norway) experience huge varia-
tions in their light levels, impacting the population’s mental state,
well-being and energy levels. Advanced sensing technologies on
smartphones enable nonintrusive and longitudinal monitoring of
user states. The collected data make it possible for healthcare pro-
fessionals and individuals to diagnose and rectify problems caused
by seasonality. In this paper, we present a personal mobile sens-
ing system that exploits technologies on smartphones to efficiently
and accurately detect the light exposure, mood, and activity lev-
els of individuals. We conducted a 2-year experiment with many
users to test the functionality and performance of our system. The
results show that we can obtain accurate light exposure estimation
by opportunistically measuring light data on smartphones, track-
ing both personal light exposure and the general seasonal trends.
An optional questionnaire also provides insight into the correla-
tion between a user’s mood and energy level. Our system is able
to inform users how little light they are experiencing in the winter
time. It can also correlate light exposure data with reduced mood
and energy, and provide quantitative measurements for lifestyle
changes.

Index Terms—Activity, health, light, mobile sensing, seasonality.

I. INTRODUCTION

A PERSON’S environment, sunlight exposure and activ-
ity level significantly affects their health and well-being.

Natural light synchronizes diurnal rhythms in physiology, sleep,
muscle, and cardiovascular function. It can also elevate one’s
alertness, cognitive performance, and mood. Thus, it is com-
mon for people in the Nordic countries, who experience fewer
hours of sunlight in the long and dark winters, to make use
of light-boxes to supplement their sunlight. Seasonal effects,
such as the “winter blues,” cause changes not only in mood but
in energy levels, sleep patterns, eating, and social behavior. In
extreme cases, patients may suffer from seasonal affective dis-
order (SAD), which is a form of depression that can occur in the
autumn and winter months. The symptoms include fatigue, lack
of interest in normal activities, social withdrawal and weight
gain. In the United States, 4%–6% of people are estimated to
suffer from SAD. Another 10%–15% experience a milder form
of winter-onset SAD [1].

Unfortunately, data collection in this area generally employs
intermittent questionnaires to diagnose seasonal effects, which
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provides patchy, nonquantitative and subjective data. To inves-
tigate people’s seasonal response, we need to automatically
continuously collect quantitative and objective data. As mobile
technology advances, smartphones nowadays possess many on-
board sensors. We propose using smartphones as convenient
tools for personal well-being/environment data collection. To
the best of our knowledge, we are the first to explore the capa-
bilities of a smartphone to monitor human light exposure and
provide long-term monitoring of seasonal effects on human
health, behavior, and well-being.

Measuring, understanding, and reflecting upon a patient’s
light exposure and activity levels is crucial when attempt-
ing to diagnose and remedy seasonal disorders. With access
to this data, it becomes possible to monitor and analyze
their health and well-being, so as to give early warnings for
those who may need further diagnosis or medical treatment.
Medical professionals and psychologists can use this quanti-
tative and historical data for diagnosis. Users of light-boxes
and light-rooms can use such a system to precisely monitor
their light exposure and record any changes in their mood and
behaviors [2].

A seasonality monitoring system should be able to provide
user-friendly and stable long-term monitoring. It has to be
unobtrusive and yet still provide accurate sensing measure-
ments that lead to meaningful interpretation. To encourage
participation in such a monitoring system, users need a high
level of comfort, simplicity, and convenience of use. External
wearable devices (such as light sensors or motion detection
belts) as used in sports applications are not ideal, as they are
designed to only function for short periods of time and may
not be pleasant for frequent daily use. Energy-efficiency is
another concern when constantly running the application on the
phone. The mobile application should not significantly drain the
battery or disrupt the normal operation of the phone.

This paper presents SADHealth, a personal sensing sys-
tem that provides a smartphone application to collect data on
activity levels and light exposure without any external sensing
device. The system is assisted by a backend server to sup-
port data storage and analysis based on the collected data. The
mobile sensing system exploits the capabilities of smartphones
to provide sufficiently accurate data for monitoring seasonality
effects. We observe that such monitoring only requires coarse-
grained information to characterise the general trend of a user’s
environment and activities. Based on this, we optimize the sam-
pling of on-board sensors to reduce energy consumption of the
phone for long-term monitoring. We performed a 2-year study
on the system’s efficacy, reliability, and usability to ensure that
long-term usage is viable.
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The main contributions of this work are: 1) design of an
unobtrusive sensing system that does not require extra devices
for light, activity and mood monitoring; 2) energy-efficient
sensing strategies working with the cloud server to provide
accurate monitoring and analysis of user states; and 3) imple-
mentation of the proposed system and a 2-year study to demon-
strate its energy-efficiency, accuracy, and efficacy in supporting
long-term studies on seasonal health.

This paper is organized as follows. Section II discusses
related work. Section III describes an overview of our approach
and Section IV presents the details of our system. The evalu-
ation is covered in Section V followed by our conclusion and
future work in Section VI.

II. RELATED WORK

Wireless body area networks (WBANs) of sensors around
the human body have been studied for medical, e-health and
sport applications [3]. BikeNet [4] is a mobile sensing system
that uses a number of sensors embedded into a cyclist’s bicycle
to gather quantitative data about the cyclist’s rides and health.
The system provides environmental data that can help users to
find better or nonpolluted routes. It demonstrated that mobile
wireless sensor networks can improve quality of life, including
how we are impacted by our environment and how we can use
data to regulate our activity patterns.

SociableSense [5] is a mobile sensing application that mon-
itors the sociability of people in the workplace. This system
utilizes accelerometer, microphone sensors, and Bluetooth to
capture human behavior in office environments and measures
their sociability with colleagues. The collected data can provide
a deep quantified understanding of social dynamics in office
environment, which may help companies to better manage
employees and increase their productivity.

Apart from physical health, researcher’s attention has been
drawn to understanding human emotion and mental health.
Affective healthcare [6] has been proposed as a mobile service
that allows people to understand and recognize their emotions
and their level of stress. iCalm [7] is a compact wearable
sensing system for long-term monitoring of autonomic ner-
vous system and motion data, including electrodermal activity,
temperature, motor activity, and photoplethysmography. It is
designed as a reliable, low power, and low-cost wearable sys-
tem. Similarly, MoodMiner [8] and EmotionSense [9] both
use mobile phones to assess an individual’s mood. Various
mobile sensors such as accelerometer, light sensor, sound sen-
sor (microphone), and location sensor (e.g., GPS) work together
with the call logs on smartphones to monitor human behav-
ior and assess daily mood. Improving user’s sleep quality was
addressed in iSleep [10], where off-the-shelf smartphones use
their microphones to monitor users while they sleep. Similar to
our approach, they use decision trees to classify users’ behavior.

Activity recognition is used to deduce what kind of activi-
ties are performed by users from their accelerometer data. In
[11], user activity was measured by using a single wearable
accelerometer and eight activities, including walking, running,
climbing, and sitting were classified using collected data. Ward
et al. [12] studied how to perform activity recognition on

assembly tasks using body-worn accelerometers and micro-
phones. It described a method for continuous recognition of
activities (sawing, hammering, filing, drilling, grinding, sand-
ing, etc.) using microphones and three-axis accelerometers
mounted at two positions on the user’s arms. Activity and
emotion recognition in [13] focuses more on mental disorders
to support early diagnosis of psychiatric diseases. Real-time
motion classification has also been investigated for wearable
computing applications [14], which can retrieve information
about user’s status in real time. Context awareness has also been
explored to analyze features for activity recognition [15]. A sur-
vey of various activity recognition papers is presented by Lara
and Labrador [16]. They show that a range of different classi-
fication techniques can provide high (over 90%) classification
accuracy. Such findings indicated to us that we should select an
approach with low computational overhead that still maintains
such performance.

Although mobile sensing has been widely investigated for
healthcare and sports applications, none of the existing work
has explored monitoring the seasonality effect on human behav-
ior, mood, and well-being. To the best of our knowledge, this
is the first work to explore the sensing capability of a smart-
phone to measure the light exposure and to study behavior
and mood changes of individuals due to the effect of sea-
son/environment. Different from existing healthcare and sports
applications, the monitoring of seasonality requires long-term
but possibly coarse-grained sensing data. These unique proper-
ties motivate our investigation into optimizing the communica-
tion and sampling intervals of the on-board sensors to reduce
energy consumption, while ensuring adequate data for observ-
ing user activity, sociability, mood, and environmental changes
in seasonality.

III. REQUIREMENTS

We shall now describe the requirements and design goals
of our system. To participate in our system, users only need
their smartphones and to have occasional Internet access for
uploading their data to the backend server. Their smartphones
can then report and access the data from the server through
WiFi or mobile data networks. Our system incorporates a public
Internet server, which is responsible for storing and process-
ing the sensed data in a secure manner. The user transmits
their data (ID, environmental sensor data, time, and date) to
the server to be stored privately, as seen in Fig. 1. In this way,
we reliably keep track of users data, including accelerometer,
light, location, and mood readings without filling up phone stor-
age. Collected data are split into 2-day long periods and saved
locally on the SD card of the smartphone, then opportunistically
transferred to the server through a device initiated authenticated
HTTP push request.

A. Sensing Types

According to studies on seasonality [17], the light/dark cycle
is the dominant force in synchronizing people’s physiological
diurnal rhythms with their external environment. There is con-
siderable anecdotal and empirical evidence that diurnal rhythms
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Fig. 1. Architecture diagram, showing device connectivity between all active
components of the system. Two users with differing network connection types
and one with an external fitness bracelet.

are a significant factor in determining mood, cognitive per-
formance, health, energy, and well-being. Most people have
experienced changes in their mood or behavior with the change
of the seasons. When designing our system, we were particu-
larly interested in measuring the amount of light users received
at different times of the year and exploring how this seasonal
change may interact with their sensed activity level and social
behavior.

The recent advancements of embedded sensors in smart-
phones makes the development of our mobile sensing appli-
cation on seasonality and health possible. Most current smart-
phones are equipped with location awareness (e.g., GPS),
motion sensors (accelerometers), and light sensors, which allow
us to the measure the location, activities, and social behav-
ior of people. We also see the trend of embedding new sensor
types into smartphones, such as air pressure, temperature, and
humidity sensors in the Samsung Galaxy device series. This
technology revolution changes the ways that we can make
use of our phones and opens a new frontier of novel crowd-
sensing applications for the environment and personal health
monitoring.

1) Light: Electronic light sensors can be used to measure
light intensity in lux, (the SI unit of illuminance). It can mea-
sure the brightness of different light sources. Table I presents
approximate lux values of different light sources for com-
parison. We use the phone’s built in light sensor to measure
this value. The light sensors on a smartphone were originally
equipped for tuning the brightness of the screen. The physi-
cal placement of a phone depends on the user’s behavior and
habits, which presents new challenges in collecting accurate
and reliable sensing data. For example, it can be hard to take
measurements from the light sensor if the phone always has a
cover in place or is constantly placed in a bag. This problem
also occurs in activity sensors, such as the accelerometer.

2) Activity: Modern smartphones have accurate high-
frequency triaxial accelerometers to allow more advanced inter-
action modalities. If the phone is carried by the user, these
sensors can passively capture their movements. Acceleration
recordings can then be classified, through machine learning

TABLE I
LUX VALUES FROM DIFFERENT LIGHT SOURCES

techniques, into different activities, gaining an understanding of
what person is doing and thus how lively they are being. Rather
than permanently recording, intermittent sampling can be used
to roughly capture a user’s activity patterns. Classification
works best when previously trained on the relevant user, we
investigate if it can still be reasonably successful when not
specifically trained on the operating user. The phone will not be
able to capture the user activities accurately if the user always
places the phone stationary on the desk rather than keeping it
on their person. Turning numerical data into categorical classi-
fications with human-understandable meaning are particularly
useful for the users. Classification can also avoid problem of
acceleration caused by cars, trains, etc., leading to large accel-
erations but not reflecting any physical exertion of the user.
This technique can help giving synopsis of longer periods of
time. For example, users can simply be shown with the num-
ber of hours they have spent performing vigorous activities,
rather than opaque numbers. Activity classification has previ-
ously been performed using many different machine learning
techniques [18], including decision trees, multilevel percep-
trons, and support vector machines. We use decision trees
generated with the C4.5 algorithm,1 an efficacious but com-
paratively computationally nonintensive technique [16]. This
ensures lightweight operation of the classification procedure
and enables the use on users’ resource constrained devices.

3) Sociability: Smartphones are able to recognize peo-
ple’s location and motion by the built-in location sensor and
accelerometer. Location sensors can measure the position of
users in order to understand how much time they spend trav-
elling and visiting different places. We record the location of
users every hour using either the phone’s passive provider (last
known location) or network provider (based on nearest mobile
network station and WiFi stations) depending on their avail-
ability, to save the battery of the smartphones. GPS will not be
manually enabled by our app due to its high energy costs and
also considering GPS’s inability to function indoors (though if
otherwise turned on, it will be used).

Another factor that could be taken into consideration as
a factor of sociability is phone usage. Smartphones facili-
tate socialisation for their users in different ways like making
phone calls, text messaging, social network interactions, etc.
The number of times phone has been used is recorded per day
as auxiliary data for sociability measurement. The integrated
data from the location sensor and phone usage count help us
to monitor phone interaction. A more in-depth system could
even monitor the user’s Internet which has been shown to give
insight into a user’s depression [19].

1Specifically, the J48 implementation in the Weka machine learning suite.
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4) Mood: Since emotion/mood sensors are not available,
a questionnaire related to mood and energy levels has been
included in our mobile application for users to optionally fill
in. The optional questionnaire alert pops up two times a day
and only during the day time. The questions are:

1) How is your mood?
2) How is your sleep?
3) How is your energy level?
4) How social have you been feeling?
The SADHealth questionnaire has been inspired by The

Seasonal Pattern Assessment Questionnaire (SPAQ) [20],
which has been summarized into four fundamental questions.
Users enter their responses using a simple visual slide-bar,
which is converted to nominal values. This questionnaire facili-
tates the regular monitoring of the user’s self-reported mental
health state, allowing future reflection of how a person was
feeling and how their moods changed over time. When com-
bined with the light and activity data, this could help identifying
patterns in a user’s life.

B. Design Goals and Major Challenges

Since the SADHealth system aims for long-term monitor-
ing, it focuses on user comfort and practicality of daily use
compared with many other short-term sensing applications for
sports or medical diagnosis. We intend to exploit the full poten-
tial of smartphones to design an unobtrusive system that does
not rely on any external wearable sensors.

The medically sensitive nature of this type of system requires
some important comments to be made. The collection of per-
sonal data (e.g., location and activities) implies a requirement
for the system to protect privacy and ensure that data is not
leaked to unauthorized sources. The collected datasets have not
been released to the public and participants we recruited were
asked to give consent to their data being used in subsequent
research. A more subtle consideration comes from users that
may be in medically precarious situations that should not rely
on our offering providing definite protection against any med-
ical problems. This holds for any such system, which should
be careful about promising protections or outcomes and should
focus on the possibility of information collection enabling a
user to change their own action or for it to be provided to
a trained healthcare professional as means for much more
informed diagnosis.

Furthermore, energy-efficiency is a major concern when it
comes to sensing on smartphones. Continuous high-frequency
sampling will consume battery, computation, and storage of the
resource-constrained devices. Our architecture should ensure
that the mobile application will not overload the phones or dis-
rupt their normal operation. The energy consumption should
be minimized to avoid battery drain and frequent charging
of the phones, which could discourage user participation. A
naive strategy is to reduce how often the sensors are sam-
pled. However, this may lead to incomplete data that results in
inaccurate observations.

While reducing the energy-consumption of the smartphones,
the SADHealth system should provide sufficiently accurate data
for reporting findings and enabling meaningful conclusions. It

Fig. 2. Software system diagram depicting the main logical units of the
smartphone application and their interaction.

is essential to deal with missing or inaccurate data due to the
limited capability of the on-board sensors or improper place-
ment of the phones. Energy-efficiency and data accuracy have
to be carefully balanced to provide adequate data for analy-
sis. The data collection scheme should capture the key features
of user behavior, health, and well-being due to seasonality
change. The sensing data can then be stored and analyzed on
the backend server.

IV. SYSTEM IMPLEMENTATION

The mobile app in our SADHealth system is an Android Java
application built using SDK version 4.2.2. The program was
implemented as a foreground Service to avoid the Android OS
terminating it. We ensure that the CPU schedules the event loop
all the time through the wake lock feature. The internal struc-
ture of the app and how it interacts with the external hardware
and our Internet cloud server is displayed in Fig. 2. We make
use of the light sensor, accelerometer, and location sensors on
the phone to collect data for the app. The sensing data are tem-
porarily stored locally on the SD card before being sent in bulk
to the cloud.

A. Energy-Efficient System Design

We now describe the basic aspects of the app as follows.
1) Processing unit—The Main Android service, which is

always running, is basically a set of timers. It works as
a scheduler for all the other services to control when to
start or stop them. The main service involves no com-
plex arithmetic calculation and has only very few I/O
operations.

2) Memory—The application consists of several services
and activities, but only the main service resides perma-
nently in the phone’s main memory while the application
is running. Hence, the app does not perform much mem-
ory allocation and occupies only little memory.

3) Data storage—The recorded data from different sensors
are stored in the phone’s external storage. These files are
labelled with a numeral extension indicating their collec-
tion time. Once the recorded data is successfully uploaded
to the server, local copies of the files will be removed from
the phone to free the storage.
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4) Data transfer—SADHealth offers both manually initi-
ated and regular automatic mechanisms for uploading the
recorded data to the server. It also provides an automatic
uploading feature to make the data transfer process more
energy-efficient and user-friendly. It determines suitable
periods to upload the data to server based on the following
conditions:

a) there is at least 1 day of data stored in the external
memory;

b) there is WiFi connection available with sufficient
signal strength;

c) there is over 70% battery power remaining in the
phone.

If all of the above conditions are satisfied, the app will
upload the data automatically.

5) Sensors—Sensing measurements are intermittently
scheduled by the main service. The sampling rate of
a sensor varies based on its sensing type (described
in Section IV-B). Nevertheless, no sensor performs
continuous sampling.

B. Energy-Efficient Mobile Sensing

1) Light Readings: It is important to make sure that the
light readings are accurate and frequent enough to gain an
representative view of the user’s environment. We have two
different strategies for recording light sensor data to achieve
this.

1) Periodic sensing—The proximity sensor is measured
every 10 min to determine if anything is covering the
front of the phone (e.g., blocking the light sensor). If the
proximity sensor is blocked then the sampling of the light
will be skipped. Otherwise, the light sensor measures
the ambient light for 5 s and only stores the maximum
value from this period. This mechanism avoids false zero
readings being taken when the phone is covered.

2) User activated sensing—Activation of the light sensor is
also triggered by the user unlocking the phone screen.
Whenever the phone is unlocked, the light sensing ser-
vice will be called and the maximum light reading in a
5-s timeframe will be stored. This strategy provides the
most accurate light measurements as the phone is exposed
to light in the same environment as the user. With user-
activated sensing, we can also ensure that the phone is not
covered or placed inside a bag or pocket.

2) Accelerometer Readings: Most people carry their
phones with them a significant proportion of the time. Our
app records the phone’s accelerometer readings to try and
understand the activity level of users. For example, we would
like to know when and how much time a user spent sitting
stationary or running in a day. Since most human significant
activities last for a non-negligible period of time, we believe
that periodic sampling over short-time intervals is enough
to characterize the activity levels of a person’s day. This
is different from many existing accelerometer applications
for measuring detailed gestures or movement changes in
sports, which require high-frequency and continuous sampling.

Fig. 3. Acceleration sensing: when the app is running, the acceleration is sam-
pled for short periods s = 10 s, with gaps of g = 110 s. During this sampling
period, many separate acceleration samples are taken at 50 Hz. Multiple over-
lapping windows of samples are then taken (length w = 256 from the set of
readings taken in this sampling period).

TABLE II
SAMPLING RATE AND CAUSE OF SAMPLING EVENT FOR DIFFERENT

SENSING TYPES IN THE SADHEALTH SYSTEM. LIGHT EXPOSURE

IS SAMPLED BOTH PERIODICALLY AND WHENEVER THE SCREEN

OF THE PHONE IS UNLOCKED

Periodic sampling here allows simpler and cheaper operation,
while still capturing the general trends at a coarse-grain..

Fig. 3 depicts how the samples are taken. The sampling rate
of the accelerometer has been set to 50 Hz to record raw accel-
eration for each axis separately, without any noise filtering.
Moreover, to make sure stored acceleration data is independent
of the gravity, linear acceleration data are used. Acceleration
data measurements are timestamped and stored locally in a file,
to be processed later for activity recognition analysis. This clas-
sification technique is based on the Weka system and its J-48
decision tree.

The sensing activities that SADHealth performs are listed in
Table II. We also specify whether the light sample was caused
by periodic sensing or user activated sensing (unlocking the
phone). Compared with continuous sampling, periodic sam-
pling of light reduces the sensor operation time to less than 1%.
Equally, the accelerometer only samples 8% of the time. Such a
large reduction in sampling produces less data and reduces the
energy expenditure of the phone significantly. The reduced data
size is particularly important for long-term monitoring, since
the phones have limited storage and may not want to (or have
the opportunity to) transfer large data files.

C. Data Processing and Communication

Data processing is performed at multiple different points in
the system, as shown in Fig. 4. Many types of raw data are col-
lected from the smartphone (depicted on the left). In particular,
the voluminous acceleration data are preprocessed by feature
extraction, which reduces its size significantly. The processed
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Fig. 4. Data flow diagram showing differing stages of data collection and
storage.

data can then be communicated over the network to the backend
server.

Data pre-processing through feature extraction and format
conversion is necessary before feeding the activity recognition
tool with our recorded data. Each partially overlapping window
from the acceleration sampling procedure is separately pro-
cessed. For each component of the acceleration (X , Y , and Z
dimensions), the following statistical features are extracted:

1) mean;
2) standard deviation;
3) energy of the sequence:

∑
i i

2/w, where i represents each
reading and w = 256, and the window length;

4) Pearson’s correlation between each pair of acceleration
components (X−Y , X−Z, and Y−Z).

All these above will produce 12 features from each sam-
ple window, which can then be processed by the activity
classification.

In addition, total sunlight hours from a user’s location is also
gathered from external weather website2 to be stored on the data
server. This enables an awareness of how much sunlight a user
could have been exposed to, and can ameliorate the situation
where the phone was unable to capture the true light exposure
the user experienced (e.g., bad placement or not carrying the
phone). After gathering all the data from the smartphones and
weather website, the cloud server will perform data analysis on
seasonal health and provides long-term storage of the data. It
can also summarize the data from different mobile users and
observe the change of their health states across seasons. For
example, a general relation of light exposure across the sea-
sons can be explored by aggregating the light data collected
from experiment participants. It may raise the awareness of
users about their light exposure, activities, and seasonal health.
As a suggestion, 10–15 min of sun exposure daily could be
recommended for users who have spent too little time outdoor.

Similarly, the cloud server can apply data mining techniques
to explore the correlation of mood, activity level, and sociability
with seasonality. In long term, sequential patterns and predic-
tion could be made to analyze people’s health trend and provide
early warning of potential risks of health issues for the users.

2Weather website [Online]. Available: http://www.wunderground.com/

Fig. 5. Application GUI screenshots showing the menu page, data visualiza-
tion, and location information. (a) User login page with simple start/stop, map,
visualization, and upload buttons. (b) User activity and light exposure (inverted
colour for clarity). (c) Recent history of user locations.

The aggregated data in the server can be presented to indi-
vidual users and medical professionals for health monitoring,
diagnosis and intervention, or medical research purposes.

D. Mobile Application Interface

The SADHealth mobile application is designed to be a
simple, informative, and user-friendly application with little
required knowledge to operate. A simple login system using
third party OpenId authentication system via the user’s Google
account means people need not even register to begin using the
app.

Fig. 5(a) shows the user interface of the app after login. The
four buttons provide different functions: starting/stopping the
app (top), displaying the location data (second), showing the
light and accelerometer data (third), and uploading data to the
server (bottom), respectively. A user can visualize his light and
activity data as shown in Fig. 5(b). These graphs allow the user
to keep track of his light exposure and activity level over time.
Similarly, he can see the places that he has visited recently on
a map, see Fig. 5(c). From the above data, the user can easily
observe the trend of his/her behavior and environment change.
Personal sensed data can be downloaded and potentially fur-
ther analyzed by classification and data mining methods to give
more formal interpretation.

V. EVALUATION

The design and implementation of the system evolved gradu-
ally as we developed and gained understanding of the important
features and technical limitations. Some initial experiments
were performed with separate light-sensing hardware before
the pure smartphone-based application was built. We shall
now describe the most important and informative results.
Initial investigations focused on a group of eight volunteers in
Sweden using Samsung Galaxy S3 and S4 smartphones running
Android OS version 4.1 or above. The experiment was initi-
ated during April 2013 with the idea to monitor users for a long
period and observe the cycle of seasonal effects on real people.
The initial aims of this early phase of the experiment was to
ensure the usability of the app and the accuracy of the collected
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data. We uploaded the SADHealth mobile app on Google Play
store3 for users to download. It has been downloaded nearly 500
times and used in over 10 countries. Once we were confident
about the functionality of the app, a larger scale evaluation was
performed with the aim of collecting data from larger group of
users over a sufficiently long time to observe seasonal effects
on human life. New users were added as the experiment contin-
ued and some users optionally left. Overall there was around 50
different users that participated in the experiment at some point
with a maximum peak of 30 users in the summer of 2013.

Using a third party application to estimate smartphone sen-
sor’s current draw, we measured how expensive using the
sensing hardware is. The proximity sensor drew 1.3 mA for 2
s, the light sensor 0.2 mA for 5 s and the acceleration sensors
were 0.2 mA for 10 s. Though comparatively small numbers,
they will all add up when being used constantly on a mobile
device and will contribute to the device not being able to enter
sleep mode.

A. Light Data

The most important question to answer when using phones
to monitor people’s environment is whether the collected data
reflect reality. With phones potentially being poorly positioned
or absent from the user, they could introduce misrepresenta-
tions of the user’s environment. Therefore, we conducted a
preliminary experiment to determine the correlation between
a phone’s light sensor and the ground-truth. The ground-truth
was recorded by subjects continually wearing an external light-
sensing device, the HOBO sensor.4 This small sensor can be
attached to person’s clothing and set to continuously monitor
and record the exposed light levels. Subjects wore the HOBO
sensor for a month, with it continually measuring the ambient
light every 10 s. The potential range of lux values detected by
the phone and HOBO sensor are 76 000 and 32 000, respec-
tively. Both light sensors can easily detect levels up to a bright
sunny day.

Fig. 6 displays a plot of the maximum lux measurement
made during each 2-h period over the course of a week period,
both curves follow the same pattern. Each day in the time
period has a peak in the morning when the subject travels
to work/university and is exposed to the strongest sunlight.
The Spearman’s coefficient between the datasets is ρ = 0.78
indicating a correlation between both mechanisms of light mon-
itoring. The phone approach performs well at catching the
peaks of daytime sunlight (and most of the troughs); however,
it occasionally misses the total magnitude during the midrange
values of early morning and late afternoon.

It appears that phones are indeed able to gain an accurate pic-
ture of the user’s exposed light levels. It would not be expected
to gain perfect correlation, as both methods are affected by dif-
ferent biases, and can only indirectly measure the true light
exposure a person experiences.

The SADHealth app light measurements are taken both peri-
odically and when the user unlocks their phone. We expect that

3Google Play Website [Online]. Available: http://play.google.com/store
4HOBO Data Loggers [Online]. Available: http://www.onsetcomp.com/

Fig. 6. A week’s worth of light readings from the continuously recorded
HOBO sensor and the intermittent readings from SADHealth. Correlation
coefficient ρ = 0.78.

light readings taken during unlocking the screen will be most
accurate, since it ensures that the phone screen is not covered
and is carried by a user. For the sake of explanation, we shall
now discuss a detailed analysis of light measurements from a
period of 48 h. We find that there are 337 light samples collected
in this period. Out of these 337 samples, 128 samples (38%)
were collected when the users were unlocking their phones. The
result showed that the phone can collect a large amount of accu-
rate light measurements with user-activated sampling. Apart
from user-activated sampling, periodic sampling is performed
to obtain adequate data in a regular basis. In periodic sampling,
light data are automatically taken only when the proximity sen-
sor is unblocked, to avoid invalid measurements. Our app takes
light measurements every 10 min when unblocked (as detected
by the proximity sensor). Over the period of 48 h, the proxim-
ity sensor was sensed 287 times and detected 78 times (27%)
where the phone was blocked. Hence, 209 times (73%) led
to successful readings of the light data. The result indicated
that periodic sensing can provide useful light measurements
most of the time. Periodic sampling could be complemented by
user activated sampling to obtain adequate light measurements
comparable to an external wearable light sensor.

The changing light over the course of the experiment’s whole
2-year period is presented in Fig. 7. There are two curves, the
first shows lux sensed by experiment participants and the sec-
ond plots the amount of sunlight hours as recorded by weather
stations. This data was restricted to samples collected by users
in the 100-km range of our university town, so that readings
would not be confused by users in the southern hemisphere or
environments with significantly different climates. Two peaks
can clearly be seen in the data, with peaks around June/July
and troughs around December/January. This naturally matches
the annual solar variation. The curves are due to variation of
the weather and the sampling process used to collect it (users
may not venture outside on particular days). The data have been
processed to allow clear visual presentation of it. First all read-
ings were binned and the maximum light reading selected as
that bin’s representative value. This curve was still noisy, so
Fig. 7 plots the exponentially smoothed time series with factor
α = 0.2 for clearer presentation. The experienced sunlight data
were collected from weather underground and contains their
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Fig. 7. Two measures of light experienced over a 2-year period 2013–2014.
Plotting the light measurements (in lux) from experiment subject’s phones and
the total number of sunlight hours recorded by the nearest weather station.

data for the Uppsala/Ultuna weather station. Sunshine time
is defined as the time when the direct solar radiation exceeds
120 W/m2. The data were collected with an highly accurate
Campbell–Stokes heliograph instrument used in weather sta-
tions. Obviously, the two curves are measuring fundamentally
different, yet highly related, quantities. However, this serves as
a sanity check and shows how people are still able to capture
some lux even when sunlight hours are extremely low. This may
be caused by people making a specific effort to travel outside
around lunch time in such northerly latitudes.

B. Activity Data

Similar to the light data collection, we conducted some pre-
liminary experiments to test the efficacy of activity monitoring
and classification through mobile phones. We now present a
comparison between continuous acceleration logging and peri-
odic acceleration logging. Our experiment involved testing the
classification accuracy when applied applied to a continuously
logged dataset and when applied to a subset of periodically
sampled data. Hence, both datasets were collected over the
same time period while a user performs a specific physical
activity, The set of activities are running, biking, walking,
and sitting. accelerometer recording of the same smartphone’s
accelerometer. The SADHealth classification technique need
not be limited to these four activity types, and can easily be
extended. Also, the level of intensity may actually be of more
interest to health professionals. Recorded activity sessions in
both datasets were labelled manually for the ground truth. After
preprocessing and feature extraction, the data were used as
input to the activity recognition tool. The data was collected
over the period May-Aug 2013 and the activities we per-
formed by five different people. We do not differentiate between
users when classifying, aiming for general-purpose nontailored
behavior, rather than learning individual’s patterns. After fea-
ture extraction, the continuous and periodic datasets contained
8612 and 689 instances, respectively, which represents a total
38.2 h of recorded and labelled activities.

Fig. 8 depicts the accuracy of classification, comparing con-
tinuous sampling with periodic sampling. The results suggest
that both sampling methods can achieve high accuracy in activ-
ity classification. Our periodic sampling scheme significantly
reduces the number of samples to only 8% when compared to

Fig. 8. Accuracy of activity recognition with J-48, comparing continuous and
periodic recording. 10-fold cross-validation has been used for evaluation.

TABLE III
CONFUSION MATRIX IN PERCENTAGE FOR

CONTINUOUS/PERIODIC SAMPLING

TABLE IV
PEARSON CORRELATION BETWEEN ANSWERS ON THE QUESTIONNAIRE

continuous sampling. Overall, an activity prediction accuracy
of 95.6% was achieved for periodic recordings, whereas activ-
ity recognition accuracy for continuous recordings was 97.9%,
showing very similar performance.

The confusion matrices for both continuous and periodic
sampling are shown in Table III. The diagonals indicate the cor-
rectly classified activities in percentage, other elements show
the percentages of misclassification. The classification is per-
formed by a 10-fold cross-validation of the labelled activity
samples. We also observe that both sampling schemes share
a similar pattern of misclassification. For example, running is
sometimes misclassified as walking due to the similarity of their
movements and some sitting data is misclassified as walking.

C. Questionnaire Analysis

To gain a rough understanding of how the users classi-
fied their mood, sleep, energy levels, and social feelings, as
described in Section III-A4. Table IV shows the Pearson cor-
relation between each of the four aspects covered by the
questionnaire. It can be seen that all aspects are positively corre-
lated, some heavily. The correlation between mood and energy
is the strongest amongst all pairs. Otherwise, social has a very
strong connection to the other three. Sleep seems to be the least
heavily correlated with the others.

It was observed that different individuals gave systemically
different answers to these questions. Some users gave consis-
tently higher or lower values, while some gave values varied to
less or greater degrees. This type of noise and bias is expected in
user-supplied subjective questions. Aggregate statistics of this
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data is not their primary use, rather this data is much more
informative when considered on a per-user basis.

D. Correlation With Seasonality

We will now focus on a period in the dataset with the great-
est darkness, the winter period from late 2013 to early 2014.
The results are calculated for each day by picking each users’
median hourly light exposure, and then taking the average of
the days in each month. As expected Fig. 9 shows changing
light exposure during summer (June to August) and winter
(November to March). It can be observed that the median lux
value is relatively high and increasing in value during the sum-
mer months, while the winter shows a decrease in the median
lux value. This graph demonstrates that SADHealth can capture
the change of light exposure for mobile users across the seasons
despite using a relatively low sampling rate. users.

Fig. 9(a) focuses on the correlation of mood and light expo-
sure data from October 2013 to March 2014. We analyzed the
data from users who have completed the questionnaire from the
app on their mood and sociability states. The solid line in the
graph represents the light data (in lux) in log scale. The dot-
ted line shows the mood data collected by the questionnaire in
the app. We can see that the mood data show a similar shape
as the curve of light exposure. Although the variation of mood
is small, it may indicate a weak correlation of mood with sea-
sonal change among our mobile participants. We believe that
larger scale experiment will be able to generate more convinc-
ing observation about the general public. At the moment, we
are able to show the change of mood and light exposure across
seasons for individual users, and demonstrate that the data of
individuals could be aggregated to draw a summary for the
community. Similarly, Fig. 9(b) shows the sociability of users in
different months. However, changes in light do not necessarily
have a strong instantaneous correlation with the reported men-
tal state, we do seem to find a gentle lasting effect on mood.
To show this end, we plot the noninstantaneous correlation
between light and mood responses. Fig. 10 shows the corre-
sponding correlation when a delay offset is introduced to the
comparison. For example, it plots the relation between experi-
enced light and the reported mood X number of days afterwards.
It can be seen that although none of the relationships have a
magnitude above ρ = 0.5, energy and mood are positively cor-
related with light in the short term, whereas sociability and
sleep are negatively correlated, this effect roughly lasts for a
month. This data does not exclude confounding factors (e.g.,
time of year), but does allow some insight to how the factors
change with relation to one another. Such plots could prove
useful when examining whether a specific user is experiencing
seasonal changes.

E. Energy Consumption

The long running nature of these experiments caused us to
be concerned about the resulting impact on a phone’s battery
power consumption, so we shall now present some aggregate
data on how much lifetime different phone models experienced
while running our app, seen in Fig. 11. It should be noted that

Fig. 9. Experienced light exposure plotted with the user reported mood during
a winter period.

Fig. 10. Changing correlation between light and the four questionnaire results,
with gradually increasing delay offsets introduced.

Fig. 11. Energy consumption of the SADHealth app on three different phone
models when using three different software scheduling systems.

the devices were still being operated as user’s normal day-
to-day phone for making calls, texts, and using the Internet.
The three most popular models owned by our users were the
Samsung S3, Nexus 4, and Nexus S. We compared the lifetime
of the phone’s battery running SADHealth using Wakelocks,
using Alarm Manager, and not running the SADHealth app at
all. We observe that the phones running the app with Alarm
Manager have longer battery lifetime than the ones running
Wakelocks. The result also shows that the phones not running
SADHealth app may have the battery lifetime 1.5 h more than
the phones running the app. Given the multiple types of sens-
ing data being monitored continuously on the smartphones, we
think that the energy consumption resulted from the app is
reasonable.
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VI. CONCLUSION AND FUTURE WORK

The relationship between people’s light exposure, activity
level and sociability is of particular interest far away from the
equator. This paper presented a light exposure and activity level
monitoring system for people concerned with their response to
seasonal variations in their environments. An unobtrusive and
lightweight Android application was developed which ensured
that the collected data were accurate and useful in character-
izing a person’s environment. Furthermore, we presented data
from a 2-year long experiment investigating some relationships
between environment and behavior. Users of our system also
have the personal benefit of a historical record of their activ-
ities, mood and light exposure to help inform their lifestyle
choices.

Results showed that periodic and user activated sampling
using the proximity and light sensors on the phone can pro-
vide adequate and high quality light measurements that are
comparable to external sensors. We also demonstrated that
intermittent sampling of accelerometer can achieve accurate
activity classification and significantly reduce the number of
samples for energy efficiency. The sociability and mood sens-
ing questionnaire data although subjective and noisy showed
some patterns of depression in winter months. It is not espe-
cially practical to consider the collective data, but it is more
useful to examine individual behavior. Furthermore, positive
correlation was seen between light exposure and mood/energy,
while there was a negative correlation with sleep and
socializing.

The next step is to extend the study to a greater number and
more varied set of participants that are willing to collect data
for long periods. Crucial to enabling this is creating an attrac-
tive and polished user-interface. To this end, we have begun
working with graphic designers and UX specialists to make
an improved version of the application. Another required fea-
ture is the ability for users to mannually share an informative
synopsis of their recent light/activity data to social media (e.g.,
Facebook and Twitter). This will serve not only to advertise
the app to new users but will promote engagement with exist-
ing users and encourage reflection on their recent behavior. It
could even spur people to arrange exterior social activities to
combat winter blues. We believe seasonality monitoring appli-
cations such as ours will form a meaningful part of health and
wellness technology in the future.
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