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ABSTRACT
In traditional mobile crowdsensing applications, organizers
need participants’ precise locations for optimal task alloca-
tion, e.g., minimizing selected workers’ travel distance to
task locations. However, the exposure of their locations
raises privacy concerns. Especially for those who are not
eventually selected for any task, their location privacy is
sacrificed in vain. Hence, in this paper, we propose a loca-
tion privacy-preserving task allocation framework with geo-
obfuscation to protect users’ locations during task assign-
ments. Specifically, we make participants obfuscate their
reported locations under the guarantee of differential pri-
vacy, which can provide privacy protection regardless of ad-
versaries’ prior knowledge and without the involvement of
any third-part entity. In order to achieve optimal task allo-
cation with such differential geo-obfuscation, we formulate a
mixed-integer non-linear programming problem to minimize
the expected travel distance of the selected workers under
the constraint of differential privacy. Evaluation results on
both simulation and real-world user mobility traces show
the effectiveness of our proposed framework. Particularly,
our framework outperforms Laplace obfuscation, a state-of-
the-art differential geo-obfuscation mechanism, by achieving
45% less average travel distance on the real-world data.

Keywords
Crowdsensing; task allocation; differential location privacy

1. INTRODUCTION
Mobile crowdsensing (MCS) is a promising sensing paradigm

which leverages the power of rich-sensor-equipped smart-
phones [13, 34]. It has attracted the interests of both academia
and industry, and enables various real-world applications,
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such as environment monitoring [24] and point-of-interest
characterization [9]. As a representative, the commercial
crowdsensing-based traffic monitoring and route navigation
app, WAZE, has already achieved more than 100 million
downloads with a user score up to 4.6/5 on Google Play [2].

On a typical MCS platform, users are registered as can-
didate workers. When MCS new tasks come, the platform
selects a proper subset of candidates to complete the tasks by
paying them some incentives. This worker selection process,
called task allocation, is a key step in MCS that can signif-
icantly impact the efficiency of MCS. Particularly, workers’
travel distance to task locations is an important issue to
consider in task allocation. For participants, if the travel
distance is too long, they will probably be unwilling to con-
duct the task. For task organizers, long travel distance will
lead to unsatisfactory conditions such as high incentive to
pay and large sensing delay. Therefore, in this paper, fol-
lowing previous work [15, 26], we use travel distance as the
utility metric for task allocation.

Existing work on MCS task allocation mostly assumes
that candidates’ locations are known to the platform, and
thus can optimize the task efficiency (i.e., minimize the travel
distance) by directly assigning tasks to nearby workers. How-
ever, this also indicates that users’ location privacy is at
risk. Note that in task allocation, only a subset of candi-
dates are selected as workers while all of them are requested
to share their locations. Even though the selected workers’
privacy concerns may be alleviated with incentives, there is
no compensation for the privacy sacrifice of the remaining
candidates. These people may get discouraged and leave the
MCS platform, downsizing the candidate worker pool and
impairing the performance of the whole platform. There-
fore, location privacy needs to be carefully considered in
task allocation, especially for the large number of unselected
candidates.

While researchers begin to address the interdisciplinary
topic of optimizing MCS task allocation under location pri-
vacy protection in recent years, most existing solutions still
suffer from the following limitations.

(1) Sensitive to adversaries’ prior knowledge. Ac-
cording to a recent survey [22], most existing mechanisms
(e.g. [10, 23, 27]) employ a cloaking-based idea (i.e., using
a coarse area to represent a precise location) to provide lo-
cation protection, but their expected privacy guarantee can
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be easily downgraded if adversaries hold certain prior knowl-
edge [3]. For example, if an adversary foreknows that a user
is a student, and the cloaking area includes both a school
and government office, the adversary can confidently infer
that the user is in the school region.

(2) Dependent on third-party trusted entities. Some
existing mechanisms require the support of other third-parties
(besides users and MCS platforms), which makes them dif-
ficult to deploy in reality. For example, To et. al [26] need
users’ cellular service providers to take an important coordi-
nation role between users and MCS platforms to provide pri-
vacy protection, while in practice cellular service providers
may lack motivation to participate.

Therefore, MCS is still in need for a more competitive and
practical location privacy-preserving task allocation mecha-
nism, which can robustly protect users’ privacy against ad-
versaries holding arbitrary prior knowledge without involv-
ing third-parties.

Recently, location privacy research introduces differen-
tial privacy [12] to provide theoretically guaranteed pro-
tection regardless of adversaries’ prior knowledge. Conse-
quently, some Location-Based Services (LBS) have proposed
several differential geo-obfuscation mechanisms [3, 7]. Such
approaches in LBS shed lights on the design of privacy-
preserving MCS task allocation regarding the two aforemen-
tioned concerns. First, differential privacy ensures that the
probability of users being mapped to one specific obfuscated
location from any of the actual locations is similar, so that
an adversary with any prior knowledge gains little additional
information from the observation (i.e., obfuscated location).
Second, differential geo-obfuscation alters users’ locations on
their smartphones, and thus has no need to involve trustful
third-parties.

However, compared to LBS, optimizing MCS task allo-
cation under differential geo-obfuscation needs to address a
new challenge. Specifically, in contrast to LBS where each
individual user’s geo-obfuscation method can be optimized
independently by considering only his/her own actual and
obfuscated locations [7], the utility of MCS task allocation
depends on all the candidates’ locations, and thus the op-
timization process must collectively take all the candidates
into account. For example, suppose there are two candi-
dates u1, u2 and one task t1, and u1 is the one nearer to
the location of t1 (should be selected as worker). After geo-
obfuscation, task allocation may wrongly select u2 as the
worker if u1’s perturbed location is farther away from t1’s
location than that of u2. With this in mind, both u1 and
u2’s (obfuscated) locations, as well as t1’s location, need
to be considered in designing the task allocation mechanism
and geo-obfuscation function. In reality, as many candidates
and tasks will simultaneously co-exist, it is rather challeng-
ing to optimally incorporate differential geo-obfuscation in
MCS task allocation while minimizing the workers’ overall
travel distance.

In this paper, we propose an MCS task allocation frame-
work to protect participants’ location privacy with differen-
tial geo-obfuscation, while minimizing the selected workers’
overall travel distance. The contributions of this paper can
be summarized as follows.

(1) To the best of our knowledge, this is the first work to
introduce differential geo-obfuscation to MCS task alloca-
tion, so as to protect participants’ location privacy regard-

less of adversaries’ prior knowledge and avoid involving any
third-party in the process.

(2) To minimize the travel distance under privacy protec-
tion, we propose an optimal privacy-preserving MCS task
allocation framework with two interleaved modules: differ-
ential geo-obfuscation and obfuscation-aware task allocation.
We formulate a mixed-integer nonlinear program (MINLP)
to collectively optimize the two modules by minimizing the
expected travel distance of the selected workers while ensur-
ing the completion of all tasks available. As directly solving
MINLP is NP-hard, we use the Benders Decomposition [5]
method to decompose it into two linear programs (LP), each
of which corresponds to optimizing one module while fixing
the other. We then iteratively optimize the two LPs till
convergence to obtain the final solution.

(3) The evaluation on both simulation and real-world user
mobility traces verifies that our proposed privacy-preserving
framework can reduce up to 45% average travel distance of
selected workers compared to a state-of-the-art differential
geo-obfuscation mechanism, Laplace obfuscation [3].

2. BACKGROUND
In this section, we first clarify the MCS task model studied

in this paper, followed by the basic concepts of differential
geo-obfuscation.

2.1 Mobile Crowdsensing Task Model
In MCS, there are two task assignment models [26], Worker

Selected Task (WST) and Server Assigned Task (SAT). In
WST model, the MCS platform publishes tasks online and
candidates can select any tasks to conduct without exposing
their location information. In SAT model, candidates up-
load their locations to the platform and the platform selects
some candidates to allocate tasks. Although WST model is
more friendly to users’ privacy, it falls shorts in not being
able to globally control the task allocation process. In con-
trast, SAT can better optimize the overall efficiency of all
the MCS tasks as the platform has the overall knowledge of
all the candidates’ locations. This paper attempts to com-
bine the advantages of both models, i.e., using SAT to get
good running performance of all the MCS tasks, while still
protecting users’ location privacy.

Moreover, in this paper, we assume that the number of
tasks is smaller than that of candidates on the MCS plat-
form, so no selected worker needs to perform more than one
task in one snapshot of the task allocation. This assump-
tion is reasonable as today’s milestone MCS applications
have already attracted millions of users (e.g. WAZE [2]),
and limiting the number of tasks for each user can benefit
both the quality of task performing and user fairness [25].

2.2 Differential Geo-Obfuscation
Differential privacy is recently introduced in location pro-

tection by Andres et. al [3]. It performs as a probabilis-
tic geo-obfuscation process, i.e., a user first obfuscates his
real location to another one according to a pre-configured
probability function P (encoding the probability of mapping
arbitrary location l to l∗) and then uploads the obfuscated
location to the server. The probability function is the key to
ensure differential privacy. The basic idea is that, suppose
the obfuscated location is l∗, for any two locations l1, l2,
their probability of being mapped to l∗ are similar. Then,
if an adversary observes a user u in l∗, he/she cannot distin-
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guish whether u is actually in l1 or l2, even if he/she knows
the obfuscation function P . With this intuition, differential
privacy formally defines such similarity between any two
locations l1, l2 for arbitrary l∗.

Differential Privacy [3, 7]. Suppose the concerned area
includes a set of locations L, then a probabilistic geo-obfus-
cation function P satisfies ε-differential-privacy, iff.

P (l∗|l1) ≤ eεd(l1,l2)P (l∗|l2) ∀l1, l2, l∗ ∈ L (1)

where P (l∗|l) is the probability of obfuscating l to l∗, d(l1, l2)
is the distance between l1 and l2, ε is the privacy budget —
the smaller ε, the higher privacy.

The distance d(l1, l2) is introduced in the formulation to
reflect the intuition that if l1 and l2 are close to each other
(i.e., small d(l1, l2)), they should be more indistinguishable.
Note that the set of locations L can be constructed by di-
viding the concerned area into a set of regions (of arbitrary
size) and selecting the representative locations of the regions
(e.g., geographic center) [7]. While d(l1, l2) could be any dis-
tance metric theoretically, following [7], we consider d(l1, l2)
as Euclidean distance with the unit of kilometer.

If P satisfies ε-differential-privacy, it can be theoretically
proved that with the observation of the obfuscated location
l∗, the improvement of an adversary’s posterior knowledge
about a user’s location distribution σ over the prior dis-
tribution π, i.e., σ/π, is bounded by eεD(L) (D(L) is the
maximum distance of any two locations in L), regardless of
what the prior π is [3]. Thus, differential geo-obfuscation
can robustly protect users’ location privacy against adver-
saries with arbitrary prior knowledge. Please refer to [3] for
the theoretical proof.

3. PROBLEM ANALYSIS
In this section, we first illustrate the overall process of

MCS task allocation with differential geo-obfuscation. Then,
we formalize the key problems during this process.

3.1 Task Allocation with Geo-Obfuscation
Suppose there exists an MCS platform holding various

sensing tasks (e.g., noise and air quality sensing) in a cer-
tain city which require workers to conduct. To protect users’
privacy, rather than frequently requiring location updating,
our framework only needs candidates to upload their (obfus-
cated) locations before a snapshot of task allocation, which
is called initialization stage (e,g., 1-hour snapshot with 5-
minute initialization). More specifically, the initialization
stage first generates a geo-obfuscation function (consider-
ing task locations), and transfers this function to candi-
dates, and then collects their obfuscated locations. The
non-responding candidates can be seen as unavailable, so
that this initialization stage is also an effective step to filter
out unavailable candidates. Finally, after collecting available
candidates’ obfuscated locations, we assign tasks to appro-
priate candidates.

Briefly, the above running process includes three steps, as
shown in Figure 1: (1) Platform-side Geo-Obfuscation Func-
tion Generation, (2) User-side Location Obfuscation, and (3)
Platform-side Obfuscation-aware Task Allocation.

(1) Platform-side Geo-Obfuscation Function Generation.
Before collecting candidates’ locations, a probabilistic ob-
fuscation function needs to be generated for candidates with
certain differential privacy guarantee. Note that task loca-
tions need to be considered when generating the geo-obfusca-

Task Locations

1. Geo-Obfuscation
Function Generation

3. Obfuscation-aware
Task Allocation

2. Location 
Obfuscation

Users’ Actual
Locations

Users’ Obfuscated
Locations

Task Allocation Results

MCS platform side

User side 

Figure 1: Workflow of task allocation with geo-obfuscation.

tion function, as we attempt to reduce the negative effects of
such geo-obfuscation on the workers’ travel distance to task
locations. Besides, the platform can take charge of generat-
ing the obfuscation function without violating users’ privacy,
since the theoretical protection of differential privacy is guar-
anteed assuming that the adversary knows the obfuscation
function [3]. In other words, the platform knows no more
than an adversary, so that users can get privacy protection
without needing to trust the platform (even it generates the
obfuscation function).

(2) User-side Location Obfuscation. After the platform
generates the obfuscation function, the candidates can down-
load it into their smartphones, and then obfuscate their ac-
tual locations according to the probabilities encoded in the
function. The obfuscated locations are uploaded to the plat-
form for task allocation in the next step. Since the location
obfuscation runs completely locally in a user’s smartphone,
no one else knows the user’s real location.

(3) Platform-side Obfuscation-aware Task Allocation. Fi-
nally, after receiving candidates’ obfuscated locations, the
MCS platform will assign tasks to proper workers, attempt-
ing to minimize the selected workers’ travel distance to the
task locations. Since users’ uploaded locations are obfus-
cated, directly seeing them as actual locations and allocating
tasks may not perform well. Instead, the obfuscation func-
tion may be taken into account for better task allocation
efficiency.

Note that to minimize workers’ travel distance, the design
of geo-obfuscation function and task allocation are somehow
interleaved. In other words, the task allocation could be
optimized only when the geo-obfuscation function is given,
and vice-versa. Therefore, collectively optimizing these two
parts is necessary to ensure a good system utility. Next, we
will mathematically formalize these two key problems.

3.2 Mathematical Problem Formulation
In this section, we formally define the two key problems in

the above process: differential geo-obfuscation and obfuscation-
aware task allocation.
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3.2.1 Differential Geo-Obfuscation Function
Briefly, the problem of generating the geo-obfuscation func-

tion P can be formulated as:

minimize: Travel distance of selected workers
subject to: P satisfies differential privacy

As the differential privacy constraint has been given in (1),
we still need to mathematically model the travel distance of
all the selected workers. To this end, we first calculate the
expected travel distance of assigning a task at lt to a user
at (obfuscated) l∗ given the geo-obfuscation function P .

d∗(l∗, lt) =

∑
l∈L π(l)P (l∗|l)d(l, lt)∑

l∈L π(l)P (l∗|l) (2)

where π is the candidates’ overall geographic distribution
in the concerned set of locations L (

∑
l∈L π(l) = 1), and

how to estimate it will be elaborated in Sec. 4; d(l, l′) is the
distance between locations l and l′.

Suppose x(l∗, lt) denotes the number of task assignments
which allocate the tasks at lt to the users at l∗. Based on x,
we can calculate the sum of expected travel distances of all
the selected users as:∑

l∗∈L

∑
lt∈L

d∗(l∗, lt)x(l∗, lt) (3)

=
∑
l∗∈L

∑
lt∈L

∑
l∈L π(l)P (l∗|l)d(l, lt)∑

l∈L π(l)P (l∗|l) x(l∗, lt) (4)

Note that when we optimize the geo-obfuscation function P ,
the actual task allocation result x is unknown. This means
that P has to be optimized under a certain hypothetical x.
More specifically, to minimize (4), this hypothetical x is also
a variable to be optimized, i.e., P and x are the best combi-
nation to achieve the minimal (4). We denote this x in the
optimal combination {P , x} as x̂.

Then, given the number of tasks at each location l, de-
noted as Nt(l), and the total number of candidates Nc

1,
we can mathematically formalize the problem of optimizing
geo-obfuscation function P as:

min
P,x̂

∑
l∗∈L

∑
lt∈L

∑
l∈L π(l)P (l∗|l)d(l, lt)∑

l∈L π(l)P (l∗|l) x̂(l∗, lt) (5)

s.t. P (l∗|l1) ≤ eεd(l1,l2)P (l∗|l2) l1, l2, l
∗ ∈ L (6)∑

l∗∈L

x̂(l∗, lt) = Nt(lt) lt ∈ L (7)

∑
l∈L

π(l)P (l∗|l) = π(l∗) l∗ ∈ L (8)

∑
lt∈L

x̂(l∗, lt) ≤ π(l∗)Nc l∗ ∈ L (9)

∑
l∗∈L

P (l∗|l) = 1 l ∈ L (10)

P (l∗|l) ≥ 0 l, l∗ ∈ L (11)

x̂(l∗, lt) ∈ Z≥0 l∗, lt ∈ L (12)

As above mentioned, although we attempt to optimize
the geo-obfuscation function (P ), the hypothetical task al-
location scheme (x̂) also needs to be optimized. Eq. (6)

1We can get Nc by sending a message to all the users on the
platform and collects their feedbacks before generating the
geo-obfuscation function.

is the constraint of differential privacy; Eq. (7) guarantees
that every task has a worker; Eq. (8) ensures that the geo-
obfuscation does not change candidates’ overall location dis-
tribution2; according to the task model discussed in Sec. 2.1,
Eq. (9) ensures that the number of tasks assigned to users at
l∗ is smaller than the total number of users there, so that no
worker needs to do more than one task3; Eq. (10) and (11)
are two general probability constraints; Eq. (12) ensures that
the number of task allocations should be integer. As the con-
straints include integral restrictions (12) and the objective
function (5) is non-linear with respect to the variables P and
x̂, this optimization is a mixed-integer non-linear program
(MINLP) [4]. While state-of-the-art non-linear optimization
techniques can deal with convex objectives effectively [8],
unfortunately, our objective function is non-convex. To this
end, a specialized algorithm is required to solve this MINLP
for getting a (near) optimal geo-obfuscation function, which
will be presented in Sec. 4.

3.2.2 Obfuscation-aware Task Allocation
The above formulation is used for generating the obfusca-

tion function (although it is constructed based on the hypo-
thetical optimal task allocation). After the candidates up-
load their obfuscated locations, the server needs to actually
allocate tasks according to the users’ uploaded locations.
We denote such real task allocation scheme as x̃, and the
problem of optimizing x̃ is formalized as:

min
x̃

∑
l∗∈L

∑
lt∈L

∑
l∈L π(l)P (l∗|l)d(l, lt)∑

l∈L π(l)P (l∗|l) x̃(l∗, lt) (13)

s.t.
∑
l∗∈L

x̃(l∗, lt) = Nt(lt) lt ∈ L (14)

∑
lt∈L

x̃(l∗, lt) ≤ Nc(l∗) l∗ ∈ L (15)

x̃(l∗, lt) ∈ Z≥0 l∗, lt ∈ L (16)

where Nc(l
∗) is the actual number of users with obfuscated

location l∗. The objective is still minimizing the travel dis-
tance, while P is already known and the only variable is x̃.
Hence, this is a mixed-integer linear program (MILP). Solv-
ing MILP is much easier than MINLP, and many up-to-date
optimization tools can solve it efficiently with well-studied
optimization techniques such as branch and bound [19]. Based
on x̃(l∗, lt), which points out how many candidates at ob-
fuscated l∗ will be selected to conduct the task at lt, we can
then randomly select this number of workers from all the
candidates reporting their locations as l∗.

4. GEO-OBFUSCATION OPTIMIZATION
As analyzed in the previous section, the first step of our

framework, i.e., geo-obfuscation function optimization, needs
a specialized algorithm for solving the relevant MINLP (5).

2Keeping important statistics invariant in obfuscation is a
common practice in statistical disclosure control with many
benefits [31]. In our case, for instance, this ensures that di-
rectly plotting candidates’ obfuscated locations on the map
can still roughly reflect the user distribution. Such a map
is usually an important part of the user interface for MCS
applications (e.g., WAZE).
3Because we cannot foreknow the real number of users whose
obfuscated location is l∗, here we can just estimate it using
the overall geo-distribution and total number of candidates.
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Our overall strategy for optimizing geo-obfuscation func-
tion is to decompose the original MINLP (5) into two linear
programs (LP). Each LP corresponds to optimizing one of
the variables P or x while fixing the other. Then, we can
iteratively solve the two LPs until convergence to get a re-
sultant P . This strategy is widely known as Benders De-
composition (BD) [5]. While BD solution depends on the
initial value of P or x̂, the optimized result may fall in a
local optima. To relieve this pitfall, we adopt a Genetic Al-
gorithm (GA) to progressively choose better initial values of
P or x̂ to yield shorter travel distances.

4.1 Benders Decomposition
BD is an optimization technique first proposed for solv-

ing very large scale linear programming problems [5], and
later is extended to solve mixed-integer nonlinear program-
ming problems [14]. The basic idea is divide-and-conquer,
i.e., dividing the variables into two subsets so that two sub-
problems are derived. Then, the solution of one subproblem
can be seen as the input of another subproblem, and the
two subproblems are alternatively solved until convergence
(or the iteration times exceed a given threshold).

As our geo-obfuscation optimization intrinsically includes
two subsets of variables, P and x̂, we can then accordingly
split the original optimization problem into two subproblems
of solving P and x̂, respectively. Each subproblem only in-
cludes the constraints relevant to either P or x̂.

P-subproblem:

min
P

∑
l∗∈L

∑
lt∈L

∑
l∈L π(l)P (l∗|l)d(l, lt)∑

l∈L π(l)P (l∗|l) x̂(l∗, lt) (17)

s.t. P (l∗|l1) ≤ eεd(l1,l2)P (l∗|l2) l1, l2, l
∗ ∈ L (18)∑

l∈L

π(l)P (l∗|l) = π(l∗) l∗ ∈ L (19)

∑
l∗∈L

P (l∗|l) = 1 l ∈ L (20)

P (l∗|l) ≥ 0 l, l∗ ∈ L (21)

Note that the objective (17) can be converted as follows, by
considering (19):

min
P

∑
l∗∈L

∑
lt∈L

∑
l∈L

π(l)

π(l∗)
d(l, lt)x̂(l∗, lt)P (l∗|l) (22)

Given x̂, the objective (22) is a linear function regarding P ,
and thus P -subproblem is a linear programming problem.

x̂-subproblem:

min
x̂

∑
l∗∈L

∑
lt∈L

∑
l∈L π(l)P (l∗|l)d(l, lt)∑

l∈L π(l)P (l∗|l) x̂(l∗, lt) (23)

s.t.
∑
l∗∈L

x̂(l∗, lt) = Nt(lt) lt ∈ L (24)

∑
lt∈L

x̂(l∗, lt) ≤ π(l∗)Nc l∗ ∈ L (25)

x̂(l∗, lt) ∈ Z≥0 l∗, lt ∈ L (26)

Given P , the objective (23) is a linear function regarding
x̂; considering the integral constraint (26), x̂-subproblem is
then a mixed-integer linear programming problem4.
4x̂-subproblem is similar to the task allocation problem
(Sec. 3.2.2) except for the difference between (15) and (25),
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Figure 2: Illustrative examples of mutation and crossover

In a word, after the Benders Decomposition, P -subproblem
and x̂-subproblem are both changed to (mixed-integer) lin-
ear programming problems, which can be efficiently solved
with off-the-shelf linear optimization softwares. In our ex-
periment, we find that usually after three or four iterations,
the iterative problem solving process is converged.

4.2 Genetic Algorithm based Initialization
To start the iteration of solving P -subproblem and x̂-

subproblem, we need to set an initial x̂ (if solving P -sub-
problem first) or P (if solving x̂-subproblem first), denoted
as x̂0 or P0. As using BD to optimize the geo-obfuscation
function often leads to the local optima, the selection of the
initial value of x̂0 or P0 becomes important regarding how
good the local optima can achieve.

To address this issue, we adopt a Genetic Algorithm (GA)
[21] to select the initial values of x̂0 that deserve testing
based on the previously obtained local optima x̂.5 Based on
the new x̂0, we can learn P , and followed by the iterative
BD process for geo-obfuscation optimization. The key idea
of GA is to generate a potential solution for utility testing
from existing solutions by using either mutation or crossover
methods under a given probability, which is often set accord-
ing to specific applications [21]. We design the mutation and
crossover processes as follows (examples in Figure 2).

Mutation: Given a previous obtained x̂, we randomly se-
lect a location pair (l1, l2) ∈ {(l, l′)|x̂(l, l′) > 0}. After-
ward, we randomly select another location l3 (l3 6= l1). Then
we construct a new x̂′0 by setting x̂′0(l1, l2) = x̂(l1, l2) − 1,
x̂′0(l3, l2) = x̂(l3, l2) + 1, and the rest values same as x̂.

Crossover : Given the parents x̂1 and x̂2, the crossover

function is used to generate two children x̂1
′

0 and x̂2
′

0 by
column exchange. More specifically, we randomly select a

location l′ and then set x̂1
′

0 (:, l′) = x̂2(:, l′) and x̂2
′

0 (:, l′) =

x̂1(:, l′); for the rest values, x̂1
′

0 = x̂1 and x̂2
′

0 = x̂2.
Note that for both mutation and crossover results, the

constraint (25) may be violated, i.e., the number of selected
workers may be larger than the number of candidates in
a certain location. Therefore, we need to recheck whether
(25) stands after mutation or crossover. If not standing, we
will re-run mutation or crossover until (i) the constraint (25)
stands, or (ii) the re-run times exceed a given threshold.

4.3 Candidate Geo-Distribution Estimation
Our optimization process needs the overall geographic dis-

tribution of candidates, π, as one input. In reality, the exact

as we do not know real user number in each obfuscated re-
gion when solving x̂-subproblem.
5Using GA to construct a new feasible P is complicated due
to the existence of differential privacy constraint (18). We
thus focus on generating new x̂0.
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π is hardly known, especially as candidates upload their ob-
fuscated locations. Here, we propose a method to estimate
π based on candidates’ previously uploaded obfuscated lo-
cations. In such a way, when a new round of task allocation
starts, we always use an up-to-date approximation of π based
on candidates’ obfuscated locations in previous rounds.

In principle, a candidate’s actual location l could be con-
sidered as a random sample from all the locations L accord-
ing to π. Although his/her reported location is obfuscated, it
can still help to improve our estimation about π, especially
because the obfuscation function P is known to the MCS
platform. Hence, estimating π can be seen as a process of
gradually updating π according to candidates’ new-coming
reported obfuscated locations. Then, this can be modeled
using Bayesian analysis. Suppose a user’s obfuscated loca-
tion is l∗, and the corresponding obfuscation function is P ,
we can update π according to the Bayes Rule as:

π(l)← π(l)P (l∗|l)∑
l′∈L π(l′)P (l∗|l′) , l ∈ L (27)

At the beginning, we need to set an initial value to π, de-
noted as π0. In most cases, π0 can be chosen as non-informative
uniform distribution, or the overall population distribution
over the target sensing area (e.g., modeled by mobile phone
call traces [33]). With the continuously incoming observa-
tions (i.e., obfuscated locations), the estimated π will con-
verge to the real candidate geo-distribution, and the impact
of π0 on the estimated π is gradually reduced [17].

Note that this estimation method has an implicit assump-
tion that candidates’ actual locations are sampled from the
same hidden geographic distribution. In reality, users’ mo-
bility patterns could be affected by various contexts [11];
only under similar contexts, this assumption could stand.
Therefore, in implementation, we can estimate a set of π
corresponding to various contexts (e.g. time, weekday or
holiday [33]). A candidate’s uploaded obfuscated location is
only used to infer the π under its corresponding context.

4.4 Implementation Speedup
The ε-differential-privacy constraint (18) of P -subproblem

involves O(|L|3) constraints, which makes the optimization
process hard to be extended to a large set of L. Therefore,
we adopt a δ-spanner-based approximation method to re-
duce the number of constraints to O(|L|2), which is proposed
in [7]. The basic idea is to compare only a subset of location
pairs (which is specified by the edges of a δ-spanner graph)
with a stricter ε

δ
-differential-privacy constraint, so as to still

ensure all the location pairs satisfying ε-differential-privacy.
That is, we can replace (18) with the following constraint:

P (l∗|l1) ≤ e
ε
δ
d(l1,l2)P (l∗|l2) l∗ ∈ L, (l1, l2) ∈ E (28)

where E is the set of edges in the δ-spanner graph. It has
been proved that for any δ > 1, we can generate a δ-spanner

graph with O( |L|
δ−1

) edges [7], so that the number of con-

straints can be reduced to O(|L|2). Please refer to [7] for
more details. Following [7], we set δ to 1.05 in this work.

5. EVALUATION
In this section, we assess the effectiveness of our proposed

framework in two aspects. First, we evaluate the perfor-
mance of our framework by simulating a target sensing area
and candidates’ real locations. The advantage of simulation

Table 1: Key parameters in simulation.

Notation Default Description

n 4 side length of area
Nc 10 candidate number
Nt 4 task number
ε ln(4) differential privacy level
π uniform candidate spatial distribution
τ uniform task spatial distribution

is that we can control different key parameters (e.g., the area
size and the candidate spatial distribution) and investigate
how our framework performs when they vary. Second, to
validate its applicability in real-world use cases, we also ver-
ify our framework on a real-life mobility dataset, D4D [6],
which includes 50,000 users’ two-week mobility traces rep-
resented by their mobile phone call logs.

5.1 Experiment Setup
5.1.1 Evaluation Scenarios

Simulation. We simulate a target area with n× n grids
and the collection of all the grid centers forms the whole
location set L. Each grid is set to 1km*1km. We vary six
key parameters in Table 1 to evaluate our framework under
different settings.

D4D [6]. D4D dataset includes 50,000 users’ phone call
traces in Costa d’Ivori, which is widely used to evaluate task
allocation mechanisms in MCS [15, 20, 35]. Referring to [15,
20], we see a user’s current location as the position of the cell
tower where he/she makes the last phone call. We select the
downtown area of the largest city in Costa d’Ivori, Abidjan,
as the target area, and randomly distribute tasks to a group
of cell towers within the area.

5.1.2 Evaluation Metric
Referring to [16], we use the Euclidean distance to mea-

sure the travel distance needed for workers to complete a
task. The evaluation metric for the task allocation efficiency
is then the Average Travel Distance (ATD) of the selected
workers and their assigned task locations:

ATD =
∑

(u,t)∈A

d(u, t)/|A| (29)

where A is the set of final task assignment (user, task) pairs,
and d(u, t) is the Euclidean distance (in km) between se-
lected worker u and the task t. Note that the distance can
be changed to other metrics, such as Manhattan distance
and map route distance, according to the practical use cases.

5.1.3 Baselines
Laplace. We compare our framework with the state-

of-the-art differential obfuscation mechanism [3] that adds
Laplacian noise to a user’s actual location, denoted as Laplace.
Intuitively, Laplace tends to obfuscate a location to its nearby
locations with higher probabilities. Formally, the obfusca-
tion probabilities are:

P (l∗|l) ∝ e−ε
d(l,l∗)
D(L) (30)

where D(L) is the maximum distance between any two lo-
cations in the target area L. Note that to make the com-
parison fair, the task allocation part of Laplace also adopts
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Figure 3: Evaluation results on simulation. (NP: no-privacy, BD: our method, LAP: Laplace)

the same linear program illustrated in Sec. 3.2.2 to get the
optimal task assignments.

No-Privacy. We also show the optimal location allo-
cation results when candidates’ real locations are reported,
which can be seen as a lower bound of ATD for location
privacy-preserving task allocation mechanisms.

5.2 Results on Simulation
The evaluation is conducted with six tunable parameters

(see Table 1) on the simulated n × n grid-cell target area.
By alternatingly tuning one of these parameters while fixing
the others, we study how our framework performs under
different settings. For each parameter setting, we repeat
1000 trials and record the mean ATD. The evaluation results
reported in Figure 3 show that our mechanism generally can
reduce ATD by up to 45% compared to Laplace.

In particular, we observe that a smaller ATD can be achieved
for MCS task allocation either by increasing the number
of candidates (Figure 3a), downsizing the target area (Fig-
ure 3b), or loosening the privacy level (Figure 3c). Com-
pared to Laplace, our method achieves significantly smaller
ATD in all settings. More specifically, the utility loss (mea-
sured by ATD) incurred by our privacy-preserving method is
only about half of Laplace. In addition, the increase of ATD
difference between our method and Laplace when loosening
the differential privacy level, shown in Figure 3c, indicates
that a larger ε gives more search space for our framework to
to approach the optimal solution.

Task number (Figure 3d), task spatial distribution (Fig-
ure 3e) and candidate spatial distribution (Figure 3f) are
also considered as parameters for evaluation. Besides uni-
form, we also inspect distributions around the center and
corner (Figure 3g)6 are the inspected distributions. The
generally consistent ATD values of our method shown in
Figure 3d, 3e and 3f elucidate that our method has stable
performance regarding the task number, the task distribu-
tions, or the candidate spatial distributions. More impor-
tantly, our mechanism always obtains much smaller ATD
than Laplace across different settings.

6A dark grid has 9× probability larger than a white grid to
be a task or candidate location.

compact scattered hybrid

Figure 4: Task distributions in D4D dataset.

Note that in Figure 3f where the candidate distribution
is not uniform, we also show ATD of our method when still
supposing uniform candidate distribution during the opti-
mization. We can observe that the inconsistent candidate
distribution assumption will lower the performance of our
method to some extent. Therefore, an accurate candidate
distribution estimation is necessary in real-life deployment.

5.3 Results on D4D
Similar to [15], we use the cell tower positions in Abidjan

as the total set of locations L and consider three types of
task distributions, compact, scattered, and hybrid, which are
shown in Figure 4 (default: scattered). We use 10:00-19:00
in workdays as the experimental period. Every one hour, the
MCS platform needs to do one round of task allocation. In
each round of task allocation, the task number ranges from 5
to 20 (default: 5), and the candidate number ranges from 20
to 50 (default: 30). Note that for each one-hour time slot,
we learn a separate candidate distribution π according to
candidates’ uploaded obfuscated locations. The total task
period lasts for two weeks, i.e., 10 workdays. The privacy
level ε ranges from ln(2) to ln(8) (default: ln(4)).

Figure 5 shows the evaluation results. Generally, the re-
sults are similar to the simulation results and our method
can always achieve a smaller ATD than Laplace. In the
following, we first investigate the impact of two important
factors, i.e., geo-distribution estimation and GA-based ini-
tialization, on the performance of our method. We then
evaluate its runtime performance.

Geo-distribution Estimation. To evaluate the effectiveness
of our geo-distribution estimation (Sec. 4.3), we measure
the difference of our estimated π′ and the actual π∗ using
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Figure 5: Evaluation results on D4D. (NP: no-privacy, BD: our method, LAP: Laplace)

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6 7 8 9 10

K
L 

D
iv

er
ge

nc
e

workday

10:00-11:00
12:00-13:00
18:00-19:00

(a) Geo-distribution Estimation

0

0.5

1

1.5

2

GA RAND

AT
D
(k
m
)

(b) Genetic Algorithm

Figure 6: Submodule evaluation on D4D.

Kullback-Leibler divergence [18], which can quantify how
much information is lost if using π′ to represent π∗:

DKL(π′||π∗) =
∑
l∈L

π′(l) log
π′(l)

π∗(l)
(31)

The more similar π′ and π∗ are, the lower DKL is. Figure 6a
shows the DKL for three example one-hour time slots, and
we set the initial value of π′ to the uniform distribution. We
can see that after two or three days, DKL can be reduced
to about 0.2, which is much smaller than the initial DKL
(i.e. π′ is uniform), indicating the effectiveness of our geo-
distribution estimation method.

Genetic Algorithm-based Initialization. To verify the ef-
fectiveness of GA-based initialization (Sec. 4.2), we compare
it with random selection of the initial value of x̂0. As shown
in Figure 6b, GA-based initialization can effectively reduce
10% of ATD compared to random initialization.

Runtime Performance. We use MOSEK 7.1 [1] to solve
our linear optimization problems. On our test PC (Intel
core i7-3612QM, 8GB RAM), it takes about 23.6 and 0.2
seconds to do one round of geo-obfuscation function gen-
eration and obfuscation-aware task allocation, respectively.
Hence, compared to no-privacy task allocation, our frame-
work introduces an overhead of less than 30 seconds, which
is totally acceptable in real-life MCS applications.

6. RELATED WORK
We review the related work from the following two aspects

in MCS literature: task allocation and location privacy.

6.1 Task Allocation in MCS
The objective of task allocation in MCS is to optimize

the overall system utility while completing all (or a high
percentage of) the tasks in the target sensing area. In the
current literature, such system utilities can be roughly clas-
sified into four categories: 1) sensing data quality [29, 28,
36], which tries to maximize the data quality measured by

a certain metric (mostly used in environmental monitoring
tasks); 2) incentive cost [35, 32], which aims at minimiz-
ing the total budget (from the task organizer perspective)
for an MCS task with different incentive mechanisms, such
as pay per participant [35] or pay per task [32]; 3) energy
consumption [25, 33], whose objective is to identify an op-
timal collaborative data sensing and uploading scheme with
energy-saving techniques such as piggybacking [33]; 4) travel
distance [15, 16, 20], where the travel distance of a user for
accomplishing a task is considered in task allocation, in or-
der to minimize the overall travel distance for all the tasks.

In this study, we advocate for the utility of minimizing
travel distance, as it is a critical issue for both participants
(i.e., users may not be willing to accomplish a task at the ex-
pense of a long-distance travel) and task organizers (i.e., an
organizer will not appreciate a delayed sensing result caused
by a participant’s long traveling time). The other kinds of
utility metrics, such as the monetary budget under certain
incentive mechanisms, will be studied in our future work.

6.2 Location Privacy in MCS
Location privacy in MCS has attracted increasing research

interests. Based on a recent survey on the MCS privacy is-
sues [22], cloaking is still a widely used strategy in practice
for protecting location privacy, e.g., [10, 23, 27]. However,
these works all have the same drawback of being sensitive to
the adversary’s prior knowledge. In order to avoid this issue,
differential privacy starts to be introduced in MCS. Wang
et al. [30] proposed to leverage differential geo-obfuscation
in environment monitoring tasks, whose utility is measured
by the overall sensing error of the target area. Our work,
by using the metric of travel distance, is not limited to envi-
ronment monitoring tasks. A closely related work to ours is
presented in [26], which also attempted to optimize workers’
travel distance under differential privacy protection. How-
ever, their mechanism needs a third-party trustful entity to
first collect users’ real locations before perturbation. They
proposed to let users’ cellular service providers act as such
a third-party, but how to incentivize service providers for
participation is a hard issue in practice. In our solution, we
let mobile users obfuscate their locations directly on their
smartphones, thus avoiding such a trustful third-party.

7. CONCLUSION
This paper addresses the privacy-preserving problem in

MCS task allocation. It uses differential geo-obfuscation
to protect users’ location privacy regardless of adversaries’
prior knowledge, without the involvement of any trustful
third-party. Meanwhile, it aims at minimizing users’ travel
distance. To this end, this paper proposes a mixed-integer
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nonlinear program to collectively optimize both differential
geo-obfuscation and task allocation using Benders Decompo-
sition. The proposed privacy-preserving solution is verified
on both simulation and real-world user mobility traces.

In the future, we plan to consider limiting each individual
worker’s travel distance when minimizing the average travel
distance for all selected workers, as a long travel distance
may discourage a worker’s motivation for completing a task.
Moreover, we will evaluate our framework on a finer-grained
user mobility dataset, such as user activity data in location
based social networks with exact GPS coordinates.

8. ACKNOWLEDGMENTS
This project is partially supported by NSFC Grant no.

61572048 and 71601106, State Language Commission Key
Program Grant no. ZDI135-18, Hong Kong ITF Grant no.
ITS/391/15FX, and ERC Consolidator Grant no. 683253
(GraphInt).

9. REFERENCES
[1] MOSEK. https://www.mosek.com/, 2016. Accessed:

2016-10-17.

[2] WAZE - Google Play. https://play.google.com/
store/apps/details?id=com.waze&hl=en, 2016.
Accessed: 2016-10-17.

[3] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis,
and C. Palamidessi. Geo-indistinguishability:
Differential privacy for location-based systems. In
CCS, pages 901–914, 2013.

[4] P. Belotti, C. Kirches, S. Leyffer, J. Linderoth,
J. Luedtke, and A. Mahajan. Mixed-integer nonlinear
optimization. Acta Numerica, 22:1–131, 2013.

[5] J. F. Benders. Partitioning procedures for solving
mixed-variables programming problems. Numerische
mathematik, 4(1):238–252, 1962.

[6] V. D. Blondel, M. Esch, C. Chan, F. Clérot, P. Deville,
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