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On Credibility Estimation Tradeoffs in Assured
Social Sensing

Dong Wang, Lance Kaplan, Tarek Abdelzaher and Charu C. Aggarwal

Abstract—Two goals of network science are to (i) uncover
fundamental properties of phenomena modeled as networks,
and to (ii) explore novel use of networks as models for a
diverse range of systems and phenomena in order to improve
our understanding of such systems and phenomena. This paper
advances the latter direction by casting credibility estimation
in social sensing applications as a network science problem,
and by presenting a network model that helps understand the
fundamental accuracy trade-offs of a credibility estimator. Social
sensing refers to data collection scenarios, where observations are
collected from (possibly unvetted) human sources. We call such
observations claims to emphasize that we do not know whether
or not they are factually correct. Predictable, scalable and robust
estimation of both source reliability and claim correctness, given
neither in advance, becomes a key challenge given the unvetted
nature of sources and lack of means to verify their claims.
In a previous conference publication, we proposed a maximum
likelihood approach to jointly estimate both source reliability and
claim correctness. We also derived confidence bounds to quantify
the accuracy of such estimation. In this paper, we cast credibility
estimation as a network science problem and offer systematic
sensitivity analysis of the optimal estimator to understand its
fundamental accuracy trade-offs as a function of an underlying
network topology that describes key problem space parameters.
It enables assured social sensing, where not only source reliability
and claim correctness are estimated, but also the accuracy of such
estimates is correctly predicted for the problem at hand.

Index Terms—Maximum Likelihood Estimation; Predictabil-
ity; Cramer-Rao Lower Bound; Scalability; Robustness; Truth
Discovery; Social Sensing;

I. INTRODUCTION

THE REALIZATION that many distinct phenomena have
underlying common network representations has recently

spurred the emergence of network science as a discipline
dedicated to the study of such networks and phenomena.
Network science uncovers fundamental properties of networks
and explores their use in modeling new, increasingly diverse
natural and engineered systems and phenomena. This paper
explores the problem of credibility estimation in social sensing
applications, also known as fact-finding [11], [15], [18], [20],
[21], as a network science problem. An underlying network
representation is presented that describes the problem space.
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The impact of network topology is then studied on the
fundamental performance trade-offs of the fact-finder.
Social sensing has emerged as an important sensing

paradigm, where humans are explicitly or implicitly involved
in data collection. Humans are generally less reliable than
well-tested infrastructure sensors, and the correctness of their
observations is often unknown a priori. Nevertheless, impor-
tant decisions may need to be made based on collected data.
To meet this challenge, a recent branch of machine learning
literature (called fact-finding) [11], [15], [20], [21], addressed
the problem of jointly estimating correctness of sources and
claims, given neither in advance. This is in contrast to a
large volume of past work where either source reliability was
assumed to be known, or claims could be externally labeled
as true or false by some training algorithm. In the absence
of such knowledge, at the core of the new work is the idea
of analyzing the topology of an information network, which
is a graph whose nodes, at a minimum, represent sources
and claims and whose edges denote who said what. Such an
information network graph is depicted in Figure 1.
Understanding and quantifying the quality of information

from topology analysis of the underlying information network
is thus a network science problem. The analysis is cast as a
problem of jointly estimating node attributes (namely, proba-
bility of correctness of each source and claim) given network
topology. The general intuition behind this formulation lies in
the observation that links between nodes act as constraints.
Namely, they constrain the joint probability distribution of the
attributes of nodes they connect. For example, the odds of
correctness of a source and the odds of correctness of a claim
it made are clearly related (and such relation constitutes the
constraint). Hence, the topology of the information network
yields the set of constraints that node attributes must obey.
A solution to the fact-finding problem aims to find the
assignment of node attributes (i.e., probability of correctness
of sources and claims) that is maximally consistent with all
constraints represented by the information network.
In preliminary conference publications [18]–[20], we devel-

oped an optimal solution to the fact-finding problem1 based
on a maximum likelihood estimation technique and analyzed
its basic properties. We further quantified the confidence in
estimation results based on the Cramer-Rao lower bound
(CRLB) [19]. This paper completes the aforementioned work
by exploring the impact of the underlying (information) net-
work topology on fact-finder performance. Analytic expres-
sions are used to study the sensitivity of estimator accuracy
to changes in several aspects of topology of the underlying

1Under a simplifying set of assumptions as described in [20]
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Fig. 1. The Fact-finding Information Network

information network, such as the number of nodes of different
types, the number of edges, the distribution of edges, and
the fraction of trusted nodes. We further validate the analytic
results by both extensive simulation and a real-world social
sensing application.
The results of this paper are important in two respects. First,

while prior literature exists on information network analysis
for purposes of fact-finding, these techniques do not offer an
assessment of quality of results. In contrast, our approach not
only provides the best hypothesis but also rigorously quantifies
how good it is compared to ground truth. This quantification
is immensely important in any practical settings, where errors
have consequences. For example, in a military scenario, a
response to the hypothesis that a particular organization har-
bors nuclear weapons can be vastly different depending on
one’s confidence in the hypothesis. Estimating the confidence
correctly and objectively from information network topology is
therefore a key contribution to both fact-finding and network
science.
Second, sensitivity analysis of fact-finder accuracy (based

on underlying network topology) is new to information net-
work and data mining literature. Given our analytic quan-
tification of confidence in results, we are able to rigorously
analyze how such confidence changes as a function of infor-
mation network topology (which reflects the input space of
the fact-finding problem). Such sensitivity analysis offers a
fundamental understanding of the capabilities and limitations
of fact-finders.
The rest of this paper is organized as follows. In Section II,

we briefly go over the maximum likelihood estimation (MLE)
approach and the problem of quantifying result accuracy.
We then derive actual and asymptotic bounds to compute
confidence intervals in source reliability and estimate the
number of misclassified claims (i.e., expected numbers of false
positives and false negatives) in Section III. Evaluation results
are presented in Section IV. We discuss the limitations of
our model and possible extensions in Section V. Finally, we
conclude the paper in Section VI.

II. PROBLEM STATEMENT

Our objective is explore the impact of information network
topology on fact-finding accuracy in social sensing applica-
tions; a challenging problem due to the unknown reliability
of data sources and the highly dynamic nature of social
sensing topologies [1]. The basic fact-finders include Hubs
and Authorities [11], Average.Log [15], and TruthFinder [21].
Other extended fact-finders and deception detection schemes
further analyze properties of assertions and sources [2], [6]–
[8], [22] and estimate the prevalence of deception or detect
fraudsters in online communities [13], [14].
Recently, a Bayesian Interpretation scheme [17] was pro-

posed to convert ranking outputs of fact-finders into prob-
ability of correctness. Wang et al. then proposed a maxi-
mum likelihood estimator, based on Expectation Maximization
(EM) [20], that was shown to beat Bayesian Interpretation
and other state-of-art fact-finders in estimation performance.
A confidence interval, based on the Cramer-Rao lower bound
(CRLB) [4], was computed for fact-finder output in a previous
conference paper [19]. This lays the ground for an in-depth
study of the impact of the underlying information network
topology on optimal fact-finder performance.
Consider a social sensing application model, where a group

ofM sources, S1, ..., SM , make individual observations about
a set of N claims C1, ..., CN in their environment. For
example, a group of local residents might join a geo-tagging
campaign to report litter locations in a park. Hence, each
claim denotes the existence or lack thereof of litter at a given
location. We consider only binary claims and assume, without
loss of generality, that their “normal” state is negative (e.g.,
no litter on the ground). Hence, sources report only when the
positive state of the claim (e.g., litter found) is encountered.
Each source generally observes only a small subset of all
claims (e.g., states of places they have been to).
Let Si denote the ith source, Cj denote the jth claim and

SiCj denote that Si reports Cj to be true. The social sensing
topology describing who reports what can be represented by
a bypartite information network SC, where source node Si

is connected to claim node Cj if Si claims that Cj is true.
Let P (Ct

j) and P (Cf
j ) denote the odds that the actual claim

Cj is indeed true and false, respectively. Let the probability
that source Si reports a claim be si (i.e., si = P (SiCj) for
all j). We refer to si as the assertiveness of the ith source.
Further, let the probability that source Si is right be ti. Note
that, this probability represents the source’s reliability, which
is not known a priori. Formally, ti is defined as:

ti = P (Ct
j |SiCj) (1)

Let ai be the (unknown) probability that source Si reports a
claim, given that it is true, and bi be the (unknown) probability
that source Si reports a claim, when it is actually false.
Formally, ai and bi are defined as follows:

ai = P (SiCj |Ct
j) bi = P (SiCj |Cf

j ) (2)

Bayes’ Theorem offers a relationship between ti, ai and bi:

ai =
ti × si

d
bi =

(1 − ti)× si
1− d

(3)
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where d is the overall prior probability that a randomly chosen
claim is true.
Let us further define zj such that it is 1 when claim Cj

is true and 0 otherwise. A maximum-likelihood estimator
can now take the information network SC as the input and
iterate between the E-step and M-step of the EM scheme [5]
until the estimation converges. An output of the EM scheme
is the maximum likelihood estimation (MLE) of source
reliability computed from its estimation parameter vector
θ = (a1, a2, ...aM ; b1, b2, ...bM ). 2 Our goal is to: (i) derive
the actual and asymptotic error bounds that characterize the
accuracy of the maximum likelihood estimator and compute
its confidence interval; (ii) estimate the accuracy of claim
classification without knowing the ground truth values of the
claims; and (iii) derive the dependency of the accuracy of
maximum likelihood estimation on parameters of the problem
space, as represented by the information network.

III. PERFORMANCE ANALYSIS OF THE MAXIMUM

LIKELIHOOD ESTIMATION

In this section, we analyze the accuracy of the maximum
likelihood estimation in two ways: (i) we derive a confi-
dence interval in source reliability estimates by computing
the Cramer-Rao lower bounds (CRLBs) for the estimation
parameters (i.e., θ) and leveraging the asymptotic normality
of maximum likelihood estimation; (ii) we derive the expected
number of misclassified claims (i.e., false claims classified as
true and true claims classified as false). We further analyze
the scalability of the actual CRLB derivation and suggest an
asymptotic (approximate) CRLB that works for systems with
a large number of sources.

A. Real Cramer Rao Lower Bound

We first derive the actual CRLB that characterizes the
estimation accuracy of the maximum likelihood estimation of
source reliability in social sensing. In estimation theory, the
CRLB expresses a lower bound on the estimation variance of
a minimum-variance unbiased estimator. In its simplest form,
the bound states the variance of any unbiased estimator is at
least as high as the inverse of the Fisher information [10].
The estimator that reaches this lower bound is said to be effi-
cient. For notational convenience, we denote the information
network SC as the observed data X and use Xij = SiCj for
the following derivation.
The likelihood function (containing hidden variable Z) of

the maximum likelihood estimation we get from EM can be
expressed as [20]:

L(θ;X,Z) = p(X,Z|θ)

=

N∏
j=1

{
M∏
i=1

a
Xij

i (1− ai)
(1−Xij) × d× zj

+
M∏
i=1

b
Xij

i (1− bi)
(1−Xij) × (1− d)× (1− zj)

}
(4)

2In reality, the EM scheme can include the prior d in θ and jointly estimate
its value [20]

where zj is the hidden variable. The EM scheme is used to
handle the hidden variable and aims to find:

θ̂ = argmax
θ

p(X |θ) (5)

where

p(X |θ) =
N∏
j=1

{
M∏
i=1

a
Xij

i (1− ai)
(1−Xij) × d

+

M∏
i=1

b
Xij

i (1− bi)
(1−Xij) × (1− d)

}
(6)

By definition of CRLB, it is given by

CRLB = J−1 (7)

where
J = E[�θ ln p(X |θ)�H

θ ln p(X |θ)] (8)

where J is the Fisher information of the estimation pa-
rameter, �θ = ( ∂

∂a1
, ... ∂

∂aM
, ∂
∂b1

, ...., ∂
∂bM

)H and H denotes
the conjugate transpose operation. In information theory, the
Fisher information is a way of measuring the amount of
information that an observable random variable X carries
about an estimated parameter θ upon which the probability of
X depends. The expectation in Equation (8) is taken over all
values for X with respect to the probability function p(X |θ)
for any given value of θ. Let X represent the set of all possible
values of Xij ∈ {0, 1} for i = 1, 2...M ; j = 1, 2, ...N . Note
|X | = 2MN . Likewise, let Xj represent the set of all possible
values of Xij ∈ {0, 1} for i = 1, 2...M at a given value of j.
Note |Xj | = 2M . Taking the expectation, Equation (8) can be
rewritten as follows:

J =
∑
X∈X

�θ ln p(X |θ)�H
θ ln p(X |θ)p(X |θ) (9)

Then, the fisher information matrix can be represented as:

J =

[
A C
CT B

]
where submatrices A, B and C contain the elements related
with the estimation parameter ai, bi and their cross terms
respectively. The representative elements Akl, Bkl and Ckl

of A, B and C can be derived as follows:

Akl = E
[ ∂

∂ak
ln p(X |θ) ∂

∂al
ln p(X |θ)

]
= E

[(∑
j

(2Xkj − 1)Zj

a
Xkj

k (1− ak)(1−Xkj)

∑
q

(2Xlq − 1)Zq

a
Xlq

l (1 − al)(1−Xlq)

)]

=
∑
j

∑
q

E
[ (2Xkj − 1)Zj(2Xlq − 1)Zq

a
Xkj

k (1− ak)(1−Xkj)a
Xlq

l (1− al)(1−Xlq)

]
(10)

where

Zj = p(zj = 1|X) =
Aj × d

Aj × d+Bj × (1 − d)

where

Aj =

M∏
i=1

a
Xij

i (1− ai)
(1−Xij) Bj =

M∏
i=1

b
Xij

i (1− bi)
(1−Xij)

(11)
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Zj is the conditional probability of the claim Cj to be true
given the information network, SC. After further simplifica-
tion as shown in the appendix A, Akl can be expressed as the
sum of only the expectation terms where j = q:

Akl =
∑
j

E
[ (2Xkj − 1)(2Xlj − 1)Z2

j

a
Xkj

k (1− ak)(1−Xkj)a
Xlj

l (1− al)(1−Xlj)

]

=
N∑
j=1

∑
X∈X j

(2Xkj − 1)(2Xlj − 1)
∏M

i=1
i�=k

Aij

∏M
i=1
i�=l

Aijd
2

∏M
i=1 Aijd+

∏M
i=1 Bij(1 − d)

(12)

where

Aij = a
Xij

i (1− ai)
(1−Xij) Bij = b

Xij

i (1− bi)
(1−Xij)

(13)

Since the inner sum in (12) is invariant to the claim index
j, we can rewrite Ak,l = NĀk,l where Ākl is:

Ākl =
∑
x∈X j

(2Xkj − 1)(2Xlj − 1)
∏M

i=1
i�=k

Aij

∏M
i=1
i�=l

Aijd
2

∏M
i=1 Aijd+

∏M
i=1 Bij(1− d)

(14)

It should also be noted that the summation in Equation (14)
is the same for all j.
By similar calculations, we can obtain the inverse of the

Fisher information matrix as follows:

J−1 =
1

N

[
Ā C̄
C̄T B̄

]−1

where we define the klth element of B̄, C̄ as:

B̄kl =

∑
x∈X j

(2Xkj − 1)(2Xlj − 1)
∏M

i=1
i�=k

Bij

∏M
i=1
i�=l

Bij(1− d)2∏M
i=1 Aijd+

∏M
i=1 Bij(1− d)

(15)

C̄kl =

∑
x∈X j

(2Xkj − 1)(2Xlj − 1)
∏M

i=1
i�=k

Aij

∏M
i=1
i�=l

Bijd(1− d)∏M
i=1 Aijd+

∏M
i=1 Bij(1 − d)

(16)

Note that the sum of Ākl, B̄kl and C̄kl are over the 2M

different permutations of Xij for i = 1, 2, ...M at a given
j. This is much smaller than the 2MN permutations of X .
This gives us the actual CRLB. Note that more claims sim-

ply lead to better estimates for θ as the variance decreases as
1
N . The decrease in variance for the estimates as a function of
M is more complicated. We can only compute it numerically.

B. Asymptotic Cramer Rao Lower Bound

Observe that the complexity of the actual CRLB compu-
tation in the above subsection is exponential with respect to
the number of sources (i.e., M ) in the system. Therefore, it is
inefficient (or infeasible) to compute the actual CRLB when
the number of sources becomes large. In this subsection, we
outline the asymptotic CRLB for efficient computation in the
sensing system with a large number of sources. The asymptotic

CRLB is derived based on the assumption that the hidden
variable (i.e., zj) can be correctly estimated from EM, which
is a reasonable assumption when the number of sources is
sufficient. Under this assumption, the log-likelihood function
of the maximum likelihood estimation we get from EM can
be expressed as follows:

lem(x; θ) =

N∑
j=1

{

zj ×
[

M∑
i=1

(Xij log ai + (1−Xij) log(1− ai) + log d)

]

+ (1− zj)

×
[

M∑
i=1

(Xij log bi + (1−Xij) log(1− bi) + log(1− d))

]}

(17)

We first compute the Fisher Information Matrix at the MLE
from the log-likelihood function given by Equation (17). Ac-
cording to prior work [20], the maximum likelihood estimator
θ̂MLE is given by:

âMLE
i =

∑N
j=1 XijZ

c
j∑N

j=1 Z
c
j

b̂MLE
i =

∑N
j=1 Xij(1− Zc

j )

N −∑N
j=1 Z

c
j

(18)

where Zc
j is the converged probability of the j

th claim to be
true from EM algorithm. Observe that each âMLE

i or b̂MLE
i

is computed from N independent samples (i.e., claims).
Plugging lem(x; θ) given by Equation (17) into the Fisher

information defined in Equation (8), we have the representative
element of Fisher Information Matrix from N claims as:

(J(θ̂MLE))i,j (19)

=

⎧⎪⎪⎨
⎪⎪⎩
0 i �= j

−EX

[∂2lem(x;ai)
∂a2

i
|ai=âMLE

i

]
i = j ∈ [1,M ]

−EX

[∂2lem(x;bi)
∂b2i

|bi=b̂MLE
i

]
i = j ∈ (M, 2M ]

Substituting the log-likelihood function in Equation (17)
and MLE in Equation (18) into Equation (19), the asymptotic
CRLB (i.e., the inverse of the Fisher Information Matrix) can
be written as:

(J−1(θ̂MLE))i,j =

⎧⎪⎪⎨
⎪⎪⎩
0 i �= j
âMLE
i ×(1−âMLE

i )
N×d i = j ∈ [1,M ]

b̂MLE
i ×(1−b̂MLE

i )
N×(1−d) i = j ∈ (M, 2M ]

(20)

Note that the asymptotic CRLB is independent ofM under
the assumption that M is sufficient, and it can be quickly
computed from the MLE of the EM scheme.

C. Confidence Interval

In this subsection, we show that the confidence interval of
source reliability can be obtained by using the CRLB we
derived in previous sections and leveraging the asymptotic
normality of the maximum likelihood estimation.
The maximum likelihood estimator posses a number of

attractive asymptotic properties. One of them is called asymp-
totic normality, which basically states the MLE estimator is
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asymptotically distributed with Gaussian behavior as the data
sample size goes up, in particular [3]:

(θ̂MLE − θ0)
d→ N(0, J−1(θ̂MLE)) (21)

where J is the Fisher Information Matrix computed from all
samples, θ0 and θ̂MLE are the true value and the maximum
likelihood estimation of the parameter θ respectively. The
Fisher information at the MLE is used to estimate its true
(but unknown) value [10]. Hence, the asymptotic normality
property means that in a regular case of estimation and in the
distribution limiting sense, the maximum likelihood estimator
θ̂MLE is unbiased and its covariance reaches the Cramer-Rao
lower bound (i.e., an efficient estimator).
From the asymptotic normality of the maximum likelihood

estimator [4], the error of the corresponding estimation on
θ follows a normal distribution with zero mean and the
covariance matrix given by the CRLB we derived in previous
subsections. Let us denote the variance of estimation error
on parameter ai as var(âMLE

i ). Recall the relation between
source reliability (i.e., ti) and estimation parameter ai and bi is
ti =

ai×d
ai×d+bi×(1−d) . For a sensing system with small values of

M and N , the estimation of ti has a complex distribution and
its estimation variance can be approximated [4]. For a sensing
system with sufficient M and N (i.e., under asymptotic
condition), the denominator of ti can be approximated as si
based on Equation (3).3 Therefore, (t̂MLE

i − t0i ) also follows
a normal distribution with zero mean and variance given by:

var(t̂MLE
i ) =

(
d

si

)2

var(âMLE
i ) (22)

Hence, we are now able to obtain the confidence interval
that can be used to quantify the estimation accuracy of the
maximum likelihood estimation on source reliability. The
confidence interval of the reliability estimation of source Si

(i.e., t̂MLE
i ) at confidence level p is given by the following:

(t̂MLE
i − cp

√
var(t̂MLE

i ), t̂MLE
i + cp

√
var(t̂MLE

i )) (23)

where cp is the standard score (z-score) of the confidence level
p. For example, for the 95% confidence level, cp = 1.96.
Therefore, the derived confidence interval of the source reli-
ability MLE, as we demonstrated, can be computed by using
the CRLB derived in this section.

D. Estimation of Claim Classification Accuracy

In previous subsections, we discussed how to compute
the CRLB and the confidence interval in source reliability
from the maximum likelihood estimation (MLE) of the EM
algorithm. However, one problem remains to be answered is
how to estimate the accuracy of the claim classification (i.e,
false positives and false negatives) without having the ground
truth values of the claims at hand. In this subsection, we
propose a quick and effective method to answer the above
question under the maximum likelihood hypothesis.
The results of the EM algorithm not only offered the MLE

on the estimation parameters (i.e., θ) but also the probability

3The value of si can be estimated as
Li
N
, where Li is the number of

observations reported by source Si

of each claim to be true given the observed data and estimation
parameters, which is given by:

Z∗
j = p(zj = 1|Xj, θ

∗) (24)

where Xj is the observed data of the claim Cj and θ∗ is the
maximum likelihood estimation of the parameter. Since the
claim is binary, it is classified as true if Z∗

j ≥ 0.5 and false
otherwise. Based on the above definition, the false positives
and false negatives in claim classification can be estimated as
follows:

FP =

N∑
j:Z∗

j ≥0.5

{Z∗
j × 0 + (1− Z∗

j )× 1} =

N∑
j:Z∗

j ≥0.5

(1− Z∗
j )

(25)

FN =

N∑
j:Z∗

j <0.5

{Z∗
j × 1 + (1− Z∗

j )× 0} =

N∑
j:Z∗

j <0.5

Z∗
j

(26)

where FP and FN stand for false positives and false nega-
tives respectively. From the above equations, we can compute
the estimated false positives and false negatives in claim
classification under the maximum likelihood hypothesis. This
enables us to estimate the accuracy of claim classification
without knowing the ground truth values a priori.
In this section, we derived a confidence interval in source

reliability and a claim classification accuracy estimator. This
allows social sensing applications to assess the quality of
their estimation results. In the following section, we evaluate
the performance of the computed confidence bounds and
estimated false positives and false negatives.

IV. EVALUATION

In this section, we evaluate of the performance of our cred-
ibility estimation approach through both extensive simulation
studies and a real world social sensing application. First, we
built a simulator in Matlab 7.10.0 that generates a random
number of sources and claims. A random probability Pi is
assigned to each source Si representing his/her reliability
(i.e., the ground truth probability that they report correct
observations). Li claims are asserted by the ith source, such
that the probability of true claims is Pi. We let Pi be uniformly
distributed between 0.5 and 1 in our experiments4. The prior,
d, discussed in Section II is set to 0.5 unless otherwise
specificed and the initial value of d assumed by the EM
alogrithm is uniformly distributed between 0.4 and 0.6.

A. Evaluation of Confidence Intervals

In this subsection, we evaluate the accuracy of computing
the confidence interval in source reliability. We carried out
experiments over three different information network scales:
small, medium and large, featuring 100, 1000, and 10000
sources, respectively. In each case, half of the claimed items
were true. We ran the EM algorithm and computed the
confidence interval in reliability of each individual source
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Fig. 2. Normalized Source Reliability Estimation Error PDF

TABLE I
ACCURACY OF CONFIDENCE INTERVALS

68% 90% 95%
100 nodes 67.11% 89.13% 94.37%
1000 nodes 67.85% 89.49% 94.51%
10000 nodes 68.35% 89.85% 94.82%

based on Equation (23). We repeated the experiments 100
times for statistical significance.
Figure 2 shows the normalized probability density function

(PDF) of source reliability estimation error for a network of
1000 sources. (Results for 100 and 10000 source networks
are similar and not shown.) Comparing the experimental
PDF to the standard Gaussian distribution, we verify that the
asymptotic normality property holds.
Table I demonstrates the accuracy of computed confidence

intervals on source reliability. It shows (for each given con-
fidence interval) the percentage of sources whose reliability
actually stays within the interval. Note that, the latter is indeed
approximately equal to the former, which demonstrates the
accuracy of interval estimation. The comparison is made for
networks of size 100, 1000, and 10000, and for confidence
levels of 68%, 90%, and 95%. The table shows the average
of 100 experiments per cell.

B. Evaluation of CRLB

In this subsection, we evaluate the accuracy of our CRLBs
(both the actual and asymptotic) at bounding estimation pa-
rameter error, as derived in Section III-A and III-B. Specifi-
cally, we compare these bounds to the actual variance of the
corresponding estimation parameters. We focus on parameter
ai (the probability that source Si reports a claim, given that
it is true). Results for parameter bi are similar. The actual
estimation variance is characterized by the average RMSE
(root mean square estimation error) over all sources.
1) Scalability Study: We first evaluate the accuracy of

CRLBs with respect to network size (i.e, M and N ). The first
experiment evaluates the effect of the number of sources (i.e.,
M ) in the network on the accuracy of both the actual and
asymptotic CRLBs. Reported results are averaged over 100
experiments and are shown in Figure 3. Observe that the actual

4In principle, there is no incentive for a source to lie more than 50% of the
time, since negating their statements would then give a more accurate truth

Fig. 3. CRLB versus Varying M

Fig. 4. CRLB versus Varying N

CRLB tracks the variance of estimation parameters accurately
even when the number of sources is small (e.g., M ≤ 20) in
the system. We also observe that the RMSE is smaller than the
actual CRLB when there are too few sources. This is because
the estimator is biased for small datasets. The asymptotic
CRLB deviates more from the actual estimation variance when
the number of sources is small (e.g., M ≤ 20). However, as
the number of sources becomes sufficient in the network, the
RMSE converges to the asymptotic CRLB quickly and the
difference between the two becomes insignificant.
The second experiment compares the derived CRLBs (both

actual and asymptotic) to the RMSE of estimation parameters
when the number of claims (i.e., N ) changes. As shown in
Section III, both the actual and asymptotic CRLB decrease as
1
N . As before, we observe that the actual CRLB is able to
track the RMSE on estimation parameter correctly and they
both decrease approximately as 1

N when the number of claim
increases. Similarly, we observe that the asymptotic CRLB
follows closely the RMSE of the estimation parameter when
the number of claims increases.
2) Trustworthiness and Assertiveness Study: Next, we eval-

uate the accuracy of CRLB when the ratio of trusted sources in
the system changes. The trusted sources are the sources who
always make correct observations (i.e, their reliability is 1). We
vary the trusted source ratio from 0 to 0.9. Reported results
are averaged over 100 experiments and shown in Figure 5.
Observe that both the actual and asymptotic CRLBs track
the estimation variance tightly. We also note that both the
CRLBs and the variance of estimation parameters improve as
the trusted source ratio increases, as might be expected.
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Fig. 5. CRLB versus Trusted Source Ratio

Fig. 6. CRLB versus Assertiveness Ratio

Finally, in the assertiveness study, we evaluate the accuracy
of CRLBs when the assertiveness ratio of sources changes.
The assertiveness ratio of a source is a measure of the
number of observations it makes. An assertiveness ratio of 1
corresponds to 1000 observations per source over the duration
of the experiment. We vary the assertiveness ratio from 0.1
to 1. Reported results are averaged over 100 experiments
and shown in Figure 6. We observe that both the actual
and asymptotic CRLBs track the RMSE of the estimation
parameters correctly as the assertiveness ratio changes.

C. Evaluation of Estimated False Positives/Negatives on
Claim Classification

In this subsection, we evaluate the estimated false posi-
tives/negatives on claim classification derived in Section III-D
by comparing them to the actual false positives/negatives
(i.e, the ones that are computed from the ground truth). We
carried out similar experiments to the previous subsection and
evaluated scalability, trustworthiness, and assertiveness.
1) Scalability Study: We first evaluate the scalability of the

estimated false positives/negatives with respect to the sensing
topology. The first experiment evaluates the performance when
the number of sources (i.e., M ) in the system changes.
We fix the number of true and false claims at 1000. The
average number of observations per source is set to 200.
We vary the number of sources from 10 to 150. Reported
results are averaged over 100 experiments and are shown in
Figure 7. Observe that both estimated false positives and false
negatives track the actual values accurately as the number of
sources changes. We also note that the false positives/negatives
decrease as the number of sources increases. The second
experiment compares the estimated false positives/negatives to

(a) False Positives

(b) False Negatives

Fig. 7. Estimation of Claim Classification Accuracy versus Varying M

(a) False Positives

(b) False Negatives

Fig. 8. Estimation of Claim Classification Accuracy versus Varying N

the actual values when the number of claims (i.e., N ) changes.
We fix the number of sources at 50. The average number
of observations per source is set to 200. We also keep the
number of true and false claims the same. We vary the number
of claims from 1000 to 2000. Reported results are averaged
over 100 experiments and shown in Figure 8. Observe that
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(a) False Positives

(b) False Negatives
Fig. 9. Estimation of Claim Classification Accuracy versus Trusted Sources
Ratio

the estimated false positives/negatives are able to track the
actual values correctly when the number of claims changes.
We also note that the estimation performance degrades as
the number of claims increases. The reason is: the sensing
topology becomes sparser as the number of claims increases
while the number of sources and observations per source stay
the same.

2) Trustworthiness and Assertiveness Study: In the trust-
worthiness study, we evaluate the estimated false posi-
tives/negatives when the ratio of trusted sources changes in
the system. In the experiment, we fix the number of sources
to be 50. The number of true and false claims are set to 1000.
The observations per source are set to 200. We vary the trusted
source ratio from 0 to 0.9. The reported results are averaged
over 100 experiments and shown in Figure 9. Observe that
the estimated false positives/negatives track the actual values
correctly and both of them decrease as the trusted source
ratio increases. The reason is: trusted sources always provide
correct observations, which helps the algorithm estimate the
truthfulness of claims more accurately.
In the assertiveness study, we evaluate the estimated false

positives/negatives when the assertiveness ratio changes in the
system. In the experiment, we fix the number of sources at
50. The number of true and false claims are set to 1000.
We vary the assertiveness ratio from 0.1 to 1. The reported
results are averaged over 100 experiments and shown in
Figure 10. Observe that the estimated false positives/negatives
track the actual values correctly and both of them decrease as
the assertiveness ratio increases. The reason is: the sensing
topology becomes more densely connected and offers a better
chance for the algorithm to correctly judge the truthfulness of
the claims as the assertiveness ratio increases.

(a) False Positives

(b) False Negatives

Fig. 10. Estimation of Claim Classification Accuracy versus Assertiveness
Ratio

D. A Real World Case Study

In this section, we evaluate the performance of our credi-
bility estimation approach through a real-world social sensing
application. The goal of this application is to identify the
correct locations of traffic lights and stop signs in the twin
city of Urbana-Champaign by leveraging GPS devices on a
set of vehicles traveling regularly in town. (The identified
traffic light and stop sign locations were then used along
with other information to compute fuel and delay estimates
on city routes for a recent green navigation service [9]). We
distributed Google’s Galaxy Nexus Android phones to a group
of participants who agreed to put them in their cars. Our
test application, on the phone, recorded GPS traces, where
every GPS reading is composed of an instantaneous latitude-
longitude location, speed, time, and bearing of the vehicle.
The application then computed simple features that constitute
(intentionally unreliable) indicators that the vehicle is waiting
at stop sign or a traffic light. Specifically, if a vehicle stops
at a location for 15-90 seconds, the application concludes that
it is stopped at a traffic light at that location. Similarly if
it stops for 2-10 seconds, it concludes that it is at a stop
sign. These conclusions were reported as claims from the
corresponding source. The claim would be that a stop sign (or
a traffic light, as applicable) exists at the current location and
bearing. Clearly, these generated claims are unreliable, due to
the simple-minded nature of the “sensor” and the complexity
of road conditions and driver’s behaviors. For example, a car
can stop anywhere on the road due to a traffic jam or a crossing
pedestrian, not necessarily at the location of traffic lights or
stop signs. Also, cars do not stop at traffic lights when they are
green. Finally, different drivers have different attitudes towards
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(a) Source Reliability Prediction

(b) Source Reliability Bound

Fig. 11. Estimation of Source Reliability in the Case of Traffic Lights

stop signs. Some are more careless and may pass stop signs
without stopping or do a “rolling stop”, whereas others reliably
stop at each sign.
The general lack of reliability of claims and sources (and

the differences in driver behavior) constituted a good test for
the fact-finding algorithm described in this paper. Hence, we
applied our credibility estimation approach to the collected
claim data with the hope to find the correct locations of
traffic lights and stop signs, and to identify the reliability of
participants. For evaluation purposes, we also independently
manually collected ground truth locations of traffic lights and
stop signs.
In the experiment, 34 people were invited to participate

in the application and 1,048,572 GPS readings (around 300
hours of driving) were collected. A total of 4865 claims were
generated by the phones, of which 3303 were for stop signs
and 1562 were for traffic lights, collectively identifying 369
distinct locations. We then generated the information network
by taking the participants as sources and their stop sign/traffic
light reports as claims. We applied the proposed credibility
estimation approach to the data collected and evaluated its
accuracy at inferring which reports were correct.
Figure 11 and Figure 12 show the results for the case of

traffic lights identification. Figure 11 shows the results of
source reliability. In Figure 11(a), we compared the source
reliability estimated by our credibility estimation algorithm
with the actual source reliability (i.e., the percentage of claims
from that source that were actually correct) computed from
ground truth. We observed that estimated values track actual
results well for most of the sources. Figure 11(b) shows the
90% confidence bounds on source reliability estimation. We
observe that actual source reliablity stays moslty within the

(a) Claim Correctness Prediction

(b) Claim Classification

Fig. 12. Estimation of Claim Correctness in the Case of Traffic Lights

90% confidence bound. Only 3 sources out of 34 (less than
10%) have their reliability slightly outside the bound, which
is what a 90% confidence interval means. Hence, the exper-
iment verifies the accuracy and tightness of the confidence
bounds derived in Section III. We also examined the 68%
and 95% confidence bounds and observed that they caputre
the 70.6% and 94.1% of sources whose relability estimations
stay within bounds, respectively. This again verifies accuracy
of those confidence intervals. Figure 12 shows the results of
claim classficiation on traffic lights. We sorted all locations,
where the system identified traffic lights (i.e., concluded that
the corresponding claims were true), by the probability of
correctness, also returned by the system. We expect that traffic
light locations identified with a higher probability will tend to
be real lights, whereas those identified with a lower probability
will include progressively more false positives.
Figure 12(a) shows the sorted locations on the x-axis,

and computes for each n, the average probability that the
first n locations are traffic lights. We compare the estimated
probability to the actual ground truth probability. We observe
that our estimation follows quite well the actual experimental
ground truth. It verifies the accuracy of the probability values
computed and used for claim classification. Additionally,
Figure 12(b) shows for each traffic light, in the same sorted
order, the actual location status (i.e., whether a traffic light
is in fact present at the location or not). We observe that
most of the traffic light locations identified by our scheme
are correct, although false positives arise as we go down in
location ranking.
We repeated the above experiments for stop sign identi-

fication and observed similar trends as we had for traffic
lights. However, we do find the identification of stop signs
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(a) Source Reliability Prediction

(b) Source Reliability Bound

Fig. 13. Estimation of Source Reliability in the Case of Stop Signs

more challenging than that of traffic lights. The reasons are:
(i) the corroborated data for stop signs is sparser because
the chances of different cars to stop at the same stop sign
are much lower than that for traffic lights; (ii) cars have
quite a few short wait behaviors at non-stop sign locations
such as exists from parking lots, left turns, and pedestrian
crossings; (iii) cars’ bearings are usually not well aligned with
the directions of stop signs, which is especially true when the
car wants to make a turn after the stop sign. Therefore, for
the evaluation of stop signs, we only picked sources whose
reliability was more than 50%. Figure 13 shows the estimation
results of source reliability. We observe that the actual source
reliablity is estimated accurately and bounded correctly by
the 90% confidence bounds. Figure 14 shows the results of
claim classification at stop signs. We observe that the actual
probability of correctness curve stays close to but slightly
lower than the estimated one. The reasons of such deviation
can be explained by the short wait behaviors mentioned above
at non-stop sign locations in real world scenarios. In a sense,
given our wait-based features, our algorithm actually did a
better job at identifying actual stop locations of vehicles
than would be predicted by looking at stop signs only. For
example, it also found exits from parking lots and locations
of pedestrian corssings. Note that, the aforementioned false
positives gradually appear at locations that are ranked lower
by the algorithm.

V. LIMITATIONS AND FUTURE WORK

This paper analyzes the accuracy of maximum likelihood
estimation in social sensing. Several simplifying assumptions
were made that offer opportunities for future work.

(a) Claim Correctness Prediction

(b) Claim Classification

Fig. 14. Estimation of Claim Correctness in the Case of Stop Signs

Sources were assumed to be independent. In reality, sources
could be influenced by each other. For example, they may copy
observations, forward rumors, or even collude to misrepresent
the truth. Hence, fact-finding should be cognizant of the social
network among the information sources, as such network
offers pathways for information propagation that violates
the independent sources assumption made in our maximum
likelihood estimation. The interaction between the social and
information networks in social sensing is shown in Figure 15.
Recent work has proposed techniques to detect the depen-

dency and copying relationship between sources [7]. Other
methods are proposed to mitigate the source collusion attack
by analyzing the network or interaction pattern of colluding
sources [12]. In sociology, Exponential Random Graph Model
(ERGM) has been widely used to study the interdependence
of sources in social networks. ERGM can represent struc-
tural tendencies and define complicated source dependence
patterns that are not easily captured by basic probabilistic
models [16]. The above techniques can be used together with
our quantification scheme to handle source dependency. The
authors are currently working on extending the current model
to handle non-independent sources. For example, one could
cluster dependent sources into approximately independent
clusters according to some source similarity metric [2] and
run our scheme on top of the clustered sources. Addition-
ally, sources are sometimes experts in specific domains. It
would be interesting to assess estimation performance when
taking source expertise into consideration. One possibility is
to weight observations differently depending on the source’s
expertise.
No dependencies were assumed among different claims.

There may be cases, however, observations on one claim could
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imply observations on another (e.g., “flooding” at city B may
imply “raining” at city A). Knowledge of such dependencies
can thus be integrated with our scheme to pre-process the
information network based on the reported observations and
their relationships. Moreover, all observations are treated
equally in our model. It is interesting to extend the model to
handle the hardness of different observations. In other words,
source reliability and confidence estimation may be computed
not only based on whether those observations from the source
are true or not but also based on whether such observations are
trivial to make. This extension prevents sources from obtaining
a track record of high reliability by making many trivially true
observations. There are techniques that analyze the hardness
of observations, which may be integrated with our scheme [8].
In this paper, sources are assumed to report only positive
states of binary claims (e.g., litter found). This is a reason-
able assumption for many social sensing applications (e.g.,
geotagging) where states of the observed variables is either
true or false. However, sources can also make contradicting
observations and claims can be non-binary in other types of
applications (e.g., an on-line review system). Our model can be
extended to handle contradicting observations as well as non-
binary claims by expanding the estimation parameter vector
that covers only positive states to every possible state of the
claim and rebuilding the likelihood function. The authors are
currently working on the above extensions.

VI. CONCLUSION

This paper studied the fundamental accuracy trade-offs
in source and claim credibility estimation in social sensing
applications. Our results allow applications to not only as-
sess the reliability of sources and claims, given neither in
advance, but also estimate the accuracy of such assessment.
Confidence bounds on source reliability are computed based
on the Cramer-Rao lower bound (CRLB). The accuracy of
claim classification is estimated by computing the probability
that each claim is correct. The derived accuracy results are
shown to predict actual errors very well. The paper is a
step towards assured social sensing: sensing that relies on
unvetted sources, where nevertheless guarantees can be given
on accuracy of fact-finding conclusions. We also note that
our problem formulation and the proposed techniques are
general enough to apply to any bi-partite network abstraction.
The authors are currently making efforts to generalize the
technique to solve problems beyond fact-finding.
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Fig. 15. Extended Social Sensing Information Network

APPENDIX A

When j �= q, plugging the expressions of Zj and Zq , we
can prove the expectation term in Equation (10) is zero:
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