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Abstract—Signal feature extraction and classification are two

common tasks in the signal processing literature. This paper

investigates the use of source identities as a common mechanism

for enhancing the classification accuracy of social signals. We

define social signals as outputs, such as microblog entries, geotags,

or uploaded images, contributed by users in a social network.

Many classification tasks can be defined on such outputs. For

example, one may want to identify the dialect of a microblog

contributed by an author, or classify information referred to in a

user’s tweet as true or false. While the design of such classifiers

is application-specific, social signals share in common one key

property: they are augmented by the explicit identity of the

source. This motivates investigating whether or not knowing the

source of each signal (in addition to exploiting signal features)

allows the classification accuracy to be improved. We call it

provenance-assisted classification. This paper answers the above

question affirmatively, demonstrating how source identities can

improve classification accuracy, and derives confidence bounds

to quantify the accuracy of results. Evaluation is performed in

two real-world contexts: (i) fact-finding that classifies microblog

entries into true and false, and (ii) language classification of

tweets issued by a set of possibly multi-lingual speakers. We also

carry out extensive simulation experiments to further evaluate the

performance of the proposed classification scheme over different

problem dimensions. The results show that provenance features

significantly improve classification accuracy of social signals, even

when no information is known about the sources (besides their

ID). This observation offers a general mechanism for enhancing

classification results in social networks.

I. INTRODUCTION

The emergence of social networks in recent years opens
myriad new opportunities for extracting information from
artifacts contributed by social sources. A significant amount
of data mining literature has recently concerned itself with
social network analysis. While much of that literature explores
clever heuristics, recent work demonstrated that some classes
of such data mining problems (such as fact-finding [1], [2])
have a rigorous estimation-theoretic formulation, amenable to
well-understood solutions that use maximum-likelihood esti-
mation techniques to accurately assess the quality of analysis
results [3], [4].

This paper explores the link between estimation theory and
social networks by addressing the problem of social signal
classification. Generalizing from the special case of fact-
finding [1]–[4], we define social signals as outputs, such as
microblog entries, geotags, or uploaded images, contributed by

users in a social network. We then consider the classification
problem of such outputs.1 Unlike signals generated by the
physical environment (such as magnetic field or sound), where
the source of the signal is often a physical object yet to be
identified, in social networks the source of a social signal is
usually explicitly indicated. For example, microblog entries
uploaded on Twitter include the user ID. So do images
uploaded on Flickr and videos uploaded on YouTube. The
ubiquity of source ID information begs the question of whether
it can assist with classification tasks defined on social signals
such as identifying the location depicted in an uploaded image,
the language used in a tweet, or the veracity of a claim.

Current classifiers address their classification tasks by ex-
ploiting domain-specific features, such as visual clues in an
image and linguistic features in text, to perform the classifi-
cation. The question posed in this paper is whether (and to
what degree) using source identity will enhance classification
results. Clearly, the more one knows about the source, the
better the enhancement. To compute a worst case, we assume
that one does not know anything about the sources other than
their IDs. This assumption is often true when users find content
on social networks that comes from arbitrary sources. The
research question addressed in this paper is to understand
to what degree knowledge of source ID alone, and without
any additional information about the sources, may enhance
classifier performance. Such an enhancement can then be
generally applied to any classification task in social networks
where source IDs are available.

One approach for incorporating source identity into the
classification problem is to add it as a feature into the classifier.
This may be cumbersome, however, as different classifiers are
usually employed for different types of signals. For example,
image classifiers and language classifiers are quite different,
which may require different solutions for incorporating source
information. Rather than having to change different classifiers
by incorporating source identities as features, the approach
we take is a general one, where the original domain-specific
classifier remains unchanged. Instead, source identities are
considered in a separate step that is independent of the domain-
specific classifier design. This step operates on classifier output

1The fact-finding problem can be thought of as a special case of classifi-
cation where one needs to classify claims into true and false.
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with the aim of improving classification results. We show
that this refinement step can be formulated as a maximum-
likelihood estimation problem.

We evaluate the approach in two real world application
scenarios: (i) a fact-finding application where noisy microblog
data are classified into true and false facts, and (ii) a language
classification application where Arabic microblogs from Twit-
ter are classified into different dialects. Our evaluation results
show that the scheme proposed in this paper significantly
improves classification accuracy of conventional classifiers by
leveraging the provenance information. We also carry out ex-
tensive simulation experiments to examine the performance of
our classification enhancement scheme in different scenarios.
The results verify its scalablility and robustness over several
key problem dimensions.

The rest of the paper is organized as follows. In Section III,
we present our signal classification model in social networks.
We discuss the proposed maximum likelihood estimation ap-
proach to improve the classification accuracy in Section IV.
The theoretical accuracy bounds that are used to quantify the
quality of the results are derived in Section V. Experimental
evaluation results are presented in Section VI. We review
related work in Section II. Finally, we discuss the limitations
of the current model and future work in Section VII, and
conclude the paper in Section VIII.

II. RELATED WORK

Classification is an fundamental problem that has been exten-
sively studied in machine learning, data mining, statistics and
pattern recognition. A comprehensive overview of different
classification schemes is described in [5], [6]. Our work aug-
ments prior classification literature in the context of classifying
social signals. The current work studied the classification of
nodes and relationships in social networks [7], [8] as well as
human related features [9]. In contrast, we take advantage of
the fact that signals in social networks, unlike physical sig-
nals in other application scenarios, explicitly mention source
ID. Hence, we develop a new provenance-assisted scheme
for enhancing classification results by taking into account
provenance information in a separate step using a maximum-
likelihood estimation approach. Our approach explicitly im-
proves classification accuracy by jointly uncovering classes
of artifacts and affinities of sources to generating artifacts of
specific classes.

One application of our classification scheme has been
fact-finding. Techniques for classifying true facts from false
ones are traced back to data mining and machine learning
literature. One of the early works is Hubs and Authorities
[10] that used a basic fact-finder where the belief in a claim
and the truthfulness of a source are jointly computed in a
simple iterative way. Pasternack et al. extended the fact-finder
framework by incorporating prior knowledge into the analysis
and proposed several extended algorithms: Average.Log, In-
vestment, and Pooled Investment [11]. Yin et al. introduced
TruthFinder as an unsupervised fact-finder for trust analysis
on a providers-facts network [12]. Other fact-finders enhanced
the basic framework by incorporating analysis on properties

or dependencies within claims or sources. Galland et al. [13]
took the notion of hardness of facts into consideration by
proposing their algorithms: Cosine, 2-Estimates, 3-Estimates.
Similar iterative algorithms have also been studied in the
context of crowdsourcing applications to minimize the budget
cost while optimizing overall quality of answers from crowd-
sourced workers [14]. While such prior work was essentially
heuristic in nature, an optimal solution to (a simplified version
of) the problem was recently proposed [1] in the context
of a simple social sensing model, demonstrating improved
performance. In contrast, this paper solved a more general
classification problem beyond fact-finding where the possible
values of artifacts are not limited to binary values.

Our classifier enhancement scheme is based on expectation
maximization. In estimation theory, Expectation Maximization
(EM) is a general optimization technique for finding the
maximum likelihood estimation of parameters in a statistic
model where the data are “incomplete” or involve latent
variables in addition to estimation parameter and observed
data [15]. EM is frequently used for data clustering in
data mining and machine learning [16], [17]. For language
modeling, the EM is often used to estimate parameters of
a mixed model where the exact model from which the data
is generated is unobservable [18]–[20]. EM is also used in
many other estimation tasks involving mixture distributions
including parameter estimation for hidden Markov models
with applications in pattern recognition, image reconstruction,
error correction codes, etc [21], [22].

III. PROBLEM FORMULATION

Consider a social network of M sources, who collectively
generate the social signals we want to classify. We henceforth
call such signals the artifacts. Let there be a total of N

artifacts, where each artifact can have one of K possible
classes. The classification problem is to determine the class
of each artifact. Many problems fall into the above category.
Below, three examples are presented:

• Fact-finders: A fact-finder considers M sources, who
collectively generate N claims (the artifacts). Each claim
is in one of two possible classes (i.e., K = 2), true or
false. The fact-finder must determine which claims are
true and which are false.

• Language classification: In a language classification
problem, there may be M authors (the sources), who
collectively write N words (the artifacts). Each word
could be in one of K languages. The goal is to identify
the language of each word.

• Automated geo-tagging of text: In a geo-tagging problem,
there may be M bloggers (the sources), who collectively
describe a set of N events (the artifacts). Each event may
take place at one of K locations, not explicitly marked in
the blog. The goal is to identify the location associated
with each event implicitly from the text.

The traditional classification approach is to take the artifacts
in isolation and find the best class for each using specialized
domain knowledge. For example, a language classifier can
use linguistic features to identify the language of a word.
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This paper augments that with the exploitation of provenance
information. By provenance, for purposes of this work, we
refer to the identity of the source(s) of each artifact. We do
not assume that we know any information about the sources
other that their IDs. While, clearly, knowing some background
about the sources will help, this is not the point of this work.
The paper investigates to what degree the knowledge of source
ID alone helps classification outcomes.

The intuitive reason why provenance information (i.e.,
source IDs) should help with classification is that sources have
affinity to generating artifacts of particular types. For example,
a person from Egypt might have an affinity to writing in
Arabic, a truthful person might have an affinity of generating
tweets of type “true”, and a person who commutes in Los An-
geles might have an affinity to complaining about LA traffic.
Said differently, sources constrain the probability distribution
of the classes of artifacts they generate. These constraints are
automatically estimated and explicitly accounted for in the
mathematical formulation of our algorithm, which then forces
the solution to obey them.

According to our terminology, multiple sources can “gen-
erate” the same artifact. For example, multiple tweeters can
make the same claim, multiple authors can use the same
word, and multiple bloggers can describe the same event. The
input to our problem describes which sources generated which
artifacts. This input is given by a bipartite graph as shown
in Figure 1, where nodes represent sources and artifacts, and
where a link exists between a source and an artifact if and
only if the source generated that artifact. We call this set the
observed input, X . The class of each artifact is unknown and
is represented by a latent variable. The vector of all such latent
variables is called Z.

Fig. 1. Input Bipartite Graph

We also define ai,k as the (unknown) probability that source
Si generates an artifact Cj given that Cj is of class k (e.g.,
the odds that source Si speaks word Cj given that Cj is from
a certain language k). Formally, ai,k is defined as follows:

ai,k = P (Si ! Cj |Class(Cj) = k) (1)

We also define Xi,j = 1 if Si generates artifact Cj (i.e,
Si ! Cj), and Xi,j = 0 otherwise. Moreover, let us denote
the probability that an artifact is of class k, given that it was
generated by source i, as ti,k. These probabilities represent

source affinities, referred to above. Formally, ti,k is given as:

ti,k = P (Class(Cj) = k|Si ! Cj) (2)

Using Bayes theorem, ti,k is related to ai,k as follows:

ti,k =

ai,k ⇥ dk

si
(3)

where si = P (Si ! Cj) represents the probability of a source
to generate artifacts (i.e., artifact production rate) and dk =

P (Class(Cj) = k) is the overall prior of a randomly chosen
artifact to be of class k.

Our problem is to jointly estimate (i) the latent variable vec-
tor Z (i.e., the class of each artifact), and (ii) the source affini-
ties, ti,k, that can be computed from the estimation parameter
vector ✓ = (✓1, ✓2, ..., ✓K), where ✓k = (a1,k, a2,k, ..., aM,k).

IV. SOLUTION

In this section, we cast the problem of jointly (i) classifying
the values of artifacts and (ii) computing source affinities
as a maximum likelihood estimation problem. A maximum-
likelihood estimator is then derived to solve it. The maximum
likelihood estimator finds the values of the unknown param-
eters (i.e., ✓) that maximize the probability of observed input
X . Hence, we would like to find ✓ that maximizes P (X|✓).
The probability P (X|✓) depends on which artifacts belong to
which classes (i.e., the values of latent variables z). Using the
total probability theorem, we can now rewrite the expression
we want to maximize, namely P (X|✓), as follows:

P (X|✓) =
X

z

P (X, z|✓) (4)

We solve this problem using the Expectation Maximization
(EM) algorithm that starts with some initial guess for ✓, say
✓0 and iteratively updates it using the formula:

✓t+1 = argmax✓{Ez|X,✓t{logP (X, z|✓)}} (5)

The above breaks down into three quantities that need to be
derived:

• The log likelihood function, logP (X, z|✓)
• The expectation step (E-step), Q

�

✓|✓(t)
�

=

Ez|X,✓t{logP (X, z|✓)}
• The maximization step (M-step), ✓t+1 =

argmax✓Q
�

✓|✓(t)
�

Note that, the E-step and M-step are computed iteratively until
the algorithm converges. The above likelihood functions are
derived below.

A. Deriving the Likelihood
To compute the log likelihood, we first compute the function
P (X, z|✓). Let us divide the source and artifact bipartite graph
X into sub-graphs, Xj , one per artifact Cj . The sub-graph
describes which sources generate the artifact and which did
not. Since artifacts are independent, we can re-write:

P (X, z|✓) =
N
Y

j=1

P (Xj , zj |✓) (6)
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which can in turn be re-written as:

P (X, z|✓) =
N
Y

j=1

P (Xj |✓, zj)P (zj) (7)

where P (Xj |✓, zj) is the joint probability of all observed input
involving artifact Cj .

Considering each artifact could have K possible class
values, Equation (8) can be further rewritten as follows:

P (X, z|✓) =
N
Y

j=1

K
X

j=1

P (Xj |✓, zj = k)P (zj = k) (8)

Hence, the likelihood function, denoted by L(✓;X, z), is
given by:

L(✓;X, z) = p(X, z|✓)

=

N
Y

j=1

n

K
X

k=1

M
Y

i=1

ai,k
Xi,j

(1� ai,k)
(1�Xi,j) ⇥ dk ⇥ z

k
j

o

(9)

where ai,k is defined in Equation (1) and Xi,j = 1 if source Si

generate artifact Cj and Xi,j = 0 otherwise. dk represents the
overall prior probability that an arbitrary artifact is of class k.
Let z1j , z2j , ..., zKj be a set of indicator variables for artifact Cj ,
where z

k
j = 1 when Cj is of class k and z

k
j = 0 otherwise. We

now formulate an expectation maximization algorithm (EM)
that jointly estimates the parameter vector ✓ and the indicator
variables, zkj .

B. Deriving the E-step and M-step

Given the above formulation, substitute the likelihood func-
tion defined in Equation (9) into the definition of Q function
of Expectation Maximization. The Expectation step (E-step)
becomes:

Q

⇣

✓|✓(t)
⌘

= EZ|X,✓(t) [logL(✓;X,Z)]

=

N
X

j=1

(

K
X

k=1

p(zj = k|Xj , ✓
(t)
)

⇥
"

M
X

i=1

(Xi,j log ai,k + (1�Xi,j) log(1� ai,k) + log dk)

#)

(10)

where Xj represents the observed links from all sources to the
j

th artifact. Let the latent variable zj be defined for Cj such
that: zj = k when Cj is of class k. Let p(zj = k|Xj , ✓

(t)
)

be the conditional probability that the variable zj is of class k

given the observed data related to the j

th artifact and current
estimate of ✓. p(zj = k|Xj , ✓

(t)
) can be further derived as:

Z(t, j, k) = p(zj = k|Xj , ✓
(t)
)

=

p(zj = k;Xj , ✓
(t)
)

p(Xj , ✓
(t)
)

=

p(Xj , ✓
(t)|zj = k)p(zj = k)

PK
k=1 p(Xj , ✓

(t)|zj = k)p(zj = k)

=

A(t, j, k)⇥ dk
PK

k=1 A(t, j, k)⇥ dk

(11)

where A(t, j, k) is defined as:

A(t, j, k) = p(Xj , ✓
(t)|zj = k)

=

M
Y

i=1

a

(t)Xi,j

i,k (1� a

(t)
i,k)

(1�Xi,j) (12)

Substituting Equation (11) into Equation (10), we get:

Q

⇣

✓|✓(t)
⌘

=

N
X

j=1

(

K
X

k=1

Z(t, j, k)

⇥
"

M
X

i=1

(Xi,j log ai,k + (1�Xi,j) log(1� ai,k) + log dk)

#)

(13)

For the Maximization step (M-step), we choose ✓

⇤ (i.e.,
(a

⇤
1,k, a

⇤
2,k, ...a

⇤
M,k) for k = 1, 2, ...,K) that maximizes the

Q

�

✓|✓(t)
�

function in each iteration to be the ✓

(t+1) of the
next iteration.

To get ✓⇤ that maximizes Q

�

✓|✓(t)
�

, we set the derivatives
@Q

@ai,k
= 0, which yields:

N
X

j=1

"

Z(t, j, k)(Xi,j
1

a

⇤
i,k

� (1�Xi,j)
1

1� a

⇤
i,k

)

#

= 0 (14)

Let us define SJi is the set of artifacts the source Si actually
generates, and ¯

SJi is the set of artifacts Si does not generate.
Thus, Equation (14) can be rewritten as:

X

j2SJi

Z(t, j, k)

1

a

⇤
i,k

�
X

j2 ¯SJi

Z(t, j, k)

1

1� a

⇤
i,k

= 0 (15)

Solving the above equations, we can get expressions of the
optimal a⇤i,k:

a

(t+1)
i,k = a

⇤
i,k =

P

j2SJi
Z(t, j, k)

PN
j=1 Z(t, j, k)

(16)

where N is the total number of artifacts we have. Z(t, j, k) is
defined in Equation (11).

Given the above, The E-step and M-step of EM optimization
reduce to simply calculating Equation (11) and Equation (16)
iteratively until they converge. The convergence analysis has
been done for EM scheme and it is beyond the scope of
this paper [23]. In practice, we can run the algorithm until
the difference of estimation parameter between consecutive
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iterations becomes insignificant. We can then classify the
classes of artifacts based on the converged value of Z(t, j, k).
Specially, Cj is of class k if Z(t, j, k) is the largest for
k = 1, 2, ..K. We can also compute the values of t

k
i from

the values of the estimation parameters based on Equation (3).
This completes the mathematical development. We summarize
the resulting algorithm in the subsection below.

C. Final Algorithm

Algorithm 1 Provenance-Assisted General Classifier
1: Initialize parameter vector ✓
2: while ✓(t) does not converge do

3: for j = 1 : N do

4: compute Z(t, j, k) based on Equation (11)
5: end for

6: ✓(t+1) = ✓(t)

7: for i = 1 : M do

8: compute a
(t+1)
i,k based on Equation (16)

9: update a
(t)
i,k with a

(t+1)
i,k in ✓(t+1)

10: end for

11: t = t+ 1
12: end while

13: Let Zc
j,k = converged value of Z(t, j, k)

14: Let aci,k = converged value of a(t)i,k
15: for j = 1 : N do

16: Let k⇤ = the class of artifact Cjwho has maximumZc
j,k

17: Cj is of Class k⇤

18: end for

19: for i = 1 : M do

20: calculate t⇤i,k from aci,k based on Equation (3)
21: end for

22: Return the computed optimal estimates of class k⇤ for each artifact Cj
and the probability of a source to generate a specific class of artifacts
(i.e.,t⇤i,k).

In summary of the EM classification scheme derived above,
the input is the source artifact graph X describing which
sources generate which artifacts and the output is an estimate
of the class of each artifact, as well as an estimate of source
affinities.

In particular, given the source artifact graph X , our algo-
rithm begins by initializing the parameter ✓. The algorithm
then iterates between the E-step and M-step until ✓ converges.
Specifically, we compute the conditional probability of an
artifact to be of class k (i.e., Z(t, j, k)) from Equation (11)
and the estimation parameter (i.e., ✓(t+1) ) from Equation (16).
Finally, we can decide whether each artifact Cj is of class
k based on the converged value of Z(t, j, k) (i.e., Z

c
j,k).

The pseudocode of the provenance assisted (PA) classification
algorithm is shown Algorithm 1.

D. Enhancing an Arbitrary Classifier
The above algorithm can be executed as an enhancement

stage for any arbitrary (domain-specific) classifier of social
signals. There are two different ways that such an enhancement
can be added.

In the first approach, the enhanced system runs the arbitrary
(domain-specific) classifier first. Assuming that the original
classifier can tell when it is very confident in its labels, and
when it is not, we can import from that classifier only labels
of those artifacts in which it is very confident. These labels are

treated as the ground truth estimate of the corresponding subset
of the indicator variables vector, Z, used by our algorithm.
Remember that the indicator variable vector, Z, in our iterative
algorithm states the class of each artifact. A subset of the
indicator variables is thus determined by the domain specific
classifier. The rest are initialized at random and the above
iterations are carried out updating their values until they
converge.

In the second approach, the enhanced system runs the
domain-specific classifier to obtain an initial guess of the
class of all artifacts. These results will presumably contain
misclassifications. Hence, the labels generated by the domain
classifier are used as initial values for the indicator variable
vector Z. Our algorithm is then executed to update these
initial estimates. The converged values of these variables
should improve upon the initial guess (i.e., upon the domain
classification results).

In the first scenario above, the improvement is obvious. Our
algorithm fills in labels that the domain classifier was unsure
of. In the second scenario, the intuitive reason why we achieve
a performance improvement is that our algorithm starts with
the output of the traditional classifier, which is already close
to the right answer and “snaps it” to the locus of points that
maximize likelihood of observations in view of constraints
that relate the probability distributions computed for sources
and the probabilities of the classes of their artifacts. This
“snapping” therefore uses additional information on source-
artifact relations, not furnished to the traditional classifier.
Namely, it obeys laws of probability and Bayesian equations
that relate source affinities and artifact classes.

V. ACCURACY BOUND

In the previous section, we derived a classification enhance-
ment scheme that takes the provenance of artifacts into
account. However, one important question remains: how to
quantify the estimation accuracy of the resulting enhanced
classifier? In particular, we are interested in obtaining the con-
fidence intervals; namely, the error bounds on the estimation
parameters of our model for a given confidence level. In this
section, we derive such Cramer-Rao lower bounds (CRLB).

A. Deriving Error Bounds

We start with the derivation of Cramer-Rao lower bounds for
our problem. The CRLB states the lower bounds of estimation
variance that can be achieved by the maximum likelihood
estimation (MLE).

We follow similar derivation steps in [4] and the derived
asymptotic CRLB of our problem is shown as follows:

(J

�1
(

ˆ

✓MLE))i,j =

(

0 i 6= j

âMLE
i,k ⇥(1�âMLE

i,k )

N⇥dk
i = j

(17)

Note that, the asymptotic CRLB is independent of M (i.e.,
number of sources) under the assumption that M is sufficient,
and it can be quickly computed.
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B. Confidence Interval

One of the attractive asymptotic properties about maximum
likelihood estimator is called asymptotic normality: The MLE
estimator is asymptotically distributed with Gaussian behavior
as the data sample size goes up. The variance of estimation
error on parameter ai,k is denoted as var(â

MLE
i ). For a

problem with sufficient M and N (i.e., under asymptotic
condition), (ˆtMLE

i,k �t

0
i,k) also follows a norm distribution with

0 mean and variance given by:

var(

ˆ

t

MLE
i,k ) =

✓

dk

si

◆2

var(â

MLE
i,k ) (18)

Thus, the confidence interval that can be used to quantify
the probability a source Si generates a given class k of artifacts
(i.e., ti,k) is given by the following:

(

ˆ

t

MLE
i,k � cp

q

var(

ˆ

t

MLE
i,k ),

ˆ

t

MLE
i,k + cp

q

var(

ˆ

t

MLE
i,k )) (19)

where cp is the standard score (z-score) of the confidence level
p. For example, for the 95% confidence level, cp = 1.96.

VI. EVALUATION

In this section, we first evaluate the performance of the
provenance-assisted (PA) classifier described in this paper
through two real world application scenarios including a
fact-finding application using geotagging data and an Arabic
dialect classification application using Twitter data feeds. We
then carry out extensive simulation experiments to study the
performance of the PA classifier over different problem dimen-
sions. The results show that our scheme significantly improves
classification accuracy compared to traditional classifiers by
using the source ID as additional information.

A. Fact-finding Example

Fact-finding is a common type of analysis applied to data
(typically text) uploaded to social networks. The goal of
fact-finding is to estimate the probability of correctness of
claims made in the text. In this experiment, we generate a
scenario where ground truth is known. Namely, we develop a
“parking lot finder” application, that helps students identify
free parking lots on campus (at the University of Illinois
at Urbana Champaign). “Free parking lots” refer to parking
lots that are free of charge after 5pm on weekdays (as well
as weekends). The application allows volunteers to identify
parking lots they think are free. This information is shared with
others. It also runs our algorithm in the background to compute
the right class for each parking lot: either “free” or “pay”. For
evaluation, we collected ground truth by visiting all parking
lots in question and accurately inspecting their posted signs.
Note that, a slightly different version of this application was
published in the context of handling conflicting claims [2]. The
current evaluation is different is that (interpreting fact-finding
as a fact classification problem) we aim to understand the
degree to which fact classification results are improved when
our expectation maximization algorithm runs as a second stage
after an initial solution is computed by another fact-finder.

In the experiment, 30 participants were recruited. Recruited
volunteers were asked to mark any parking lots they thought
were free. Participants were not asked to visit all parking lots
in the area. Rather, they were asked to mark parking lots at will
(e.g., those parking lots they are familiar with). Collectively,
they surveyed 106 parking lots (46 of which were indeed free).
There were a total of 423 reports (notations claiming a “free
parking lot”) collected from these participants.

We note that there are many different types of parking lots
on campus: enforced parking lots with time limits, parking
meters, permit parking, and others. Different parking lots have
different regulations for free parking. Moreover, instructions
and permit signs sometimes are easy to miss. Hence, our
participants suffered both false positives and false negatives in
their reports. Moreover, participants differed in their reliability
(i.e., affinity to generating correct responses). Some actually
visited the parking lots in person and carefully inspected the
posted signs. Others, reported results from memory.

In our evaluation, three different fact-finding schemes are
first employed. Our expectation maximization algorithm is
then applied to their output. Specifically, Average-Log [11],
Truth-Finder [12] and a Voting scheme were used to provide
three different initial guesses regarding artifact classification.
The voting scheme considered a parking lot to be “free” if
it was reported free by at least a given number of volunteers.
This threshold was varied in the evaluation results shown later.

To run our provenance-assisted (PA) expectation maximiza-
tion algorithm, we generated the source to artifact bipar-
tite graph (i.e., observed input X) taking the participants
as sources and parking lots as artifacts. The artifacts were
assigned class “free” or “pay” depending on the results of
Average-Log [11], Truth-Finder [12], or the voting scheme,
respectively. Our scheme then performed its iterations until
they converged. The receiver operating characteristics (ROCs)
curves computed by these schemes as well as the final solu-
tion of our provenance assisted (PA) classifier are shown in
Figure 2.

Fig. 2. ROCs of Different Fact-Finders

We observe that the PA classifier achieved the best ROCs
performance among all schemes under comparison. The reason
is that our PA classifier modeled the provenance information
of the artifacts explicitly and used the MLE approach to
find the value of each claim that is most consistent with the
observations we had. We also observed that the EM algorithm
converges to the ML solution given a reasonable initialization.
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As a result, the PA classifier is insensitive to the initial guess
provided by the other classifiers.

Fig. 3. Source probability to report true claims

We also evaluated the probability of a source to report
true claims (“free parking lot”) and the confidence bounds
we derived to quantify its accuracy. We calculated the 90%
confidence bounds based on the formula derived in Sections V.
The results are shown in Figure 3. The sources are sorted
based on the value of the lower bounds at 90% confidence.
We observe that there are only 2 sources out of 30 whose
probability to report true claims was outside the 90% confi-
dence bounds, which matches quite well with the definition
of a 90% confindence interval (which implies that no more
than 3 sources out of 30 should be outside the interval). The
results verified the correctness and accuracy of the confidence
bounds we derived for our PA classifier.

B. Arabic Dialect Classification
In this application, the goal is to automatically distinguish

two dialects of Arabic in a set of tweets. In particular, we
used Twitter to collect Arabic tweets for our experiment.
The two dialects we selected were Egyptian and Morrocan.
For evaluation purposes, we used two sets of key words,
representing Arabic words that only appear in either Egyptian
or Morrocan dialect. Then, we used them as query words
to collect tweets that originated from Egypt and Morocco
respectively. We collected 2945 tweets in total, including 2000
Egyptian tweets and 945 Morrocan tweets. Note that, the
choice of Egyptian and Moroccan was dictated simply by
available language expertise on the team, to make ground-
truthing of dialects possible.

In our experiment, we applied both a domain-specific dialect
classifier [24] and the provenance-assisted (PA) classifier we
developed in this paper on the collected tweets and compared
their performance. To use the provenance-assisted classifier,
we first broke the tweets into words and removed punctuation
marks, non-linguistic symbols and tags in the tweets. We then
built the source artifact graph by taking the users of the tweets
as sources and the words they tweeted as artifacts. There is
a link between a source and an artifact if the user tweeted
that word. We first ran the domain classifier on the collected
tweets and obtained the dialect classification results. We then
used the dialect outputs to label all words and initialized our
PA classifier accordingly.

The compared results are shown in Table I. We changed
the threshold of the probability to decide whether a word is

Egyptian or not from 0.5 to 0.95. From Table I, we observe
that, compared to the domain Classifier, the PA classifier
was able to increase the accuracy of Egyptian classification
by more than 10% while keeping the accuracy of Morrocan
tweet classification slightly better or similar. Such performance
gain is obtained by leveraging the user ID information of
tweets. We also observed that the PA classifier performance is
consistent and robust when the threshold value was varied in
the experiment.

Fig. 4. Source probability to speak Egyptian

We also studied the probability of a source to speak a given
dialect and the confidence bounds we derived to quantify its
accuracy. For demonstration purposes, we randomly picked 30
sources and computed the probability that the source speaks
Egyptian from the tweets he/she actually tweeted. We also
calculated the 90% confidence bounds based on the formula
derived in Sections V. The results are shown in Figure 4.
We observe that in this case there are only 3 sources out of
30 whose probability to speak Egyptian was outside the 90%
confidence interval, which means that indeed exactly 90% of
the sources fall withing the interval.

C. Simulation Study

The above experiments represent only two points in the
space of possible datasets to apply classifiers to. They feature
datasets with only two classes and a limited number of sourses.
To explore performance more broadly, in this subsection, we
carried out extensive simulation experiments evaluating the
provenance-assisted (PA) classification scheme along different
problem dimensions.

We built a simulator in Matlab 7.10.0 that generates a
random number of sources and artifacts. A probability t

k
i is

assigned to each source Si representing his/her probability to
generate artifacts of a given class k. For each source Si, Li

artifacts are generated. We ensure that
PK

k=1 t
k
i = 1.

In the evaluation, we mainly studied three metrics: (i) the
average estimation error of t

k
i normalized by its mean value;

(ii) the average classification error; (iii) the fraction of sources
whose t

k
i are within the confidence bounds we derived in

Section V.
1) Source-Artifact Graph Topology - Sources: In the first

experiment, we evaluate the estimation accuracy of the PA
classifier by varying the number of sources in the system.
The number of generated artifacts was fixed at 3000. The
average number of artifacts generated per source was set to
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TABLE I
ARABIC DIALECTS CLASSIFICATION RESULTS

Domain Classifier PA Classifier

(Threshold=0.5)

PA Classifier

(Threshold=0.75)

PA Classifier

(Threshold=0.95)

Correctly Classified Egyptian
Tweets

1645 1860 1855 1839

Correctly Classified Morrocan
Tweets

852 840 850 861

Egyptian Tweet Classification
Accuracy

82.3% 93% 92.8% 92%

Morrocan Tweet Classification
Accuracy

90.2% 88.9% 90% 91.1%
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Fig. 5. Changing the number of sources. PA classifier operates as an add-on to a domain classfier that leaves 50% of the artifacts unlabeled.

50. We assumed that a domain-specific classifier has already
labeled half the artifacts with class labels. This is to emulate
the case where the initial classifier was sure of only 50% of the
data. Our PA classifier used the labeled artifacts to initialize
the EM algorithm and figure out the classes of the unlabeled
ones. The number of sources was varied from 200 to 1000. In
this initial experiment, the probability that a source generates
artifacts of a given class, t

k
i , was drawn at random from a

uniform distribution. In some sense, this offers a worst-case
for our classifier, as it indicates absence of a clear affinity
between sources and artifacts. (Later, we show experiments
with stronger affinity models.) The number of classes K was
varied from 2 to 5. Reported results are averaged over 50
random distributions of tki .

Results are shown in Figure 5. Observe that the PA classifier
estimation accuracy improves as the number of sources in
the system increases. Given sufficient sources, the estimation
error in t

k
i , and artifact classification error are kept well

below 5%. We also note the fraction of sources whose t

k
i are

actually bounded by the 90% confidence interval is normally
around or above 90%, which verifies the accuracy of the
confidence intervals we derived. Additionally, we observe that
the performance of the PA classifier increases as the number
of classes K decreases. The reason is that the number of
estimation parameters becomes smaller.

2) Source-Artifact Graph Topology - Artifacts: The second
experiment studies the performance of the PA classifier when
the average number of artifacts generated per source changes.
As before, the number of generated artifacts was fixed at
3000. The average number of sources was set to 300. The
fraction of labeled artifacts (presumably by a domain specific

classifier) was set to 0.5. The number of artifacts generated
per source was varied from 50 to 200. The number of classes
K was varied from 2 to 5. Reported results are averaged
over 50 random distributions of t

k
i . Results are shown in

Figure 6. Observe that the PA classifier estimation accuracy
improves as the number of generated artifacts per source
increases. This is because more artifacts simply provide more
evidence for the PA classifier to figure which artifact belongs
to which class. Similarly, we note the fraction of sources
whose t

k
i are bounded by the 90% confidence interval are

indeed above 90%. Additionally, we also observe similar trend
of performance increase of the PA classifier as the number of
classes (i.e., K) decreases.

3) Fraction of Labeled Atrifacts: The third experiment
examines the effect of changing the fraction of the labeled
artifacts on the PA classifier. We vary the fraction of labeled
artifacts by the domain classifier from 0.1 to 0.9, while fixing
the total number of artifacts to 3000. The average number of
artifacts generated per source was set to 50. The number of
sources was set to 300. The number of classes K was varied
from 2 to 5. Reported results are averaged over 50 random
distributions of t

k
i . Results are shown in Figure 7. Observe

that the PA classifier estimation error reduces as the fraction
of labeled artifacts increases. This is intuitive: more correctly
labeled artifacts will help the PA classifier converge to better
results. Moreover, the 90% confidence bounds are shown to
be tight even when the fraction of labeled artifacts is relatively
small. We also observe that the estimation performance of the
PA classifier increases as the number of classes decreases.

4) Imperfect Domain Classifiers: In the above experiments,
we looked at the case where some fraction of artifacts are
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Fig. 6. Changing the number of artifacts per source. PA classifier operates as an add-on to a domain classfier that leaves 50% of the artifacts unlabeled.
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Fig. 7. Changing the fraction of labeled artifacts

correctly labeled and the rest are not labeled. The other usage
scenario for our PA classifier is one where a domain classifier
labels everything, but a certain fraction of labels are wrong.
In this case, the PA classifier does not view initial labels as
ground truth. Instead, it simply uses them as initial values for
the iterations.

We first repeated the first and second experiments using a
domain classifier with imperfect class labels. The experiment
setup was the same as before except that we assumed all
artifacts are labeled by an imperfect classifier and the fraction
of incorrect labels was set to 25%. The results are shown
in Figure 8 and Figure 9. We observe that our PA classifier
significantly improves the classification accuracy over the
original classifiers. The fraction of mis-classified artifacts was
reduced to below 10% (from 25%) for all cases we examined.
These results demonstrate the capability of our classification
enhancement scheme to improve the classification accuracy of
imperfect classifiers.

Next we repeated experiment 3 above with an imperfect
domain classifier. In this case, we assumed all artifacts are
labeled and varied the fraction of incorrect labels from 0.05
to 0.5. The results are shown in Figure 10. We observed that
our PA classifier performance is robust to the fraction of initial
incorrect labels and is able to reduce the classification error
significantly compared to the original labels. For example,
when half of the initial labels are wrong, our PA classifier
was able to reduce the fraction of mis-classified artifacts to
about 12% for K=5. This result demonstrated the capability
of the PA classifier to improve the classification accuracy of

imperfect classifiers when the source information is available.
In all cases, the reported results are averaged over 50 instances.

5) Study of Source Affinity Models: In the next experiment,
we studied the effect of different source affinity models on the
performance of our PA classifier. Sources may have affinity to
generating certain types of artifacts (e.g., individuals living
in Morocco may have an affinity to the Moroccan dialect and
individuals living in Egypt may have an affinity to the Egyptian
dialect). We studied three types of sources in our experiment:
(i) specialized sources: each source produces only one class
of artifacts (e.g., speaks only one language) regardless of how
many classes are simulated in the data set; (ii) semi-specialized
sources: each source uniformly produces some number of
classes of artifacts that is less than the total number of classes;
(iii) and semi-specialized sources with dominant affinity: same
as semi-specialized sources, except that the odds of producing
different classes of artifacts by a source are not uniform. There
is a preferred class that dominates. The other classes share the
remaining probability equally.

In the experiment, the number of sources was set to 300
and each source generated 50 artifacts on average. The total
number of artifacts was set to 3000, and the number of classes
was fixed at 5. We set the fraction of labeled artifacts to
0.5. The reported results are averaged over 50 experiments.
Figure 11 showed the performance comparison between spe-
cialized sources and semi-specialized sources. We observe
that the source specialization can improve the classification
accuracy. The reason is that highly specialized sources have
more concentrated distributions to generate given types of



10

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 200  300  400  500  600  700  800  900  1000

Er
ro

r o
f S

ou
rc

e 
Pr

ob
ab

ilit
y 

to
 G

en
er

at
e 

a 
C

la
ss

Number of Sources

Number of Classes: K=2
Number of Classes: K=3
Number of Classes: K=4
Number of Classes: K=5

(a) Source Probability Estimation Error

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 200  300  400  500  600  700  800  900  1000

Fr
ac

tio
n 

of
 M

is
-C

la
ss

ifi
ed

 A
rti

fa
ct

s

Number of Sources

Number of Classes: K=2
Number of Classes: K=3
Number of Classes: K=4
Number of Classes: K=5

(b) Fraction of Misclassified Artifacts

 0

 0.2

 0.4

 0.6

 0.8

 1

 200  300  400  500  600  700  800  900  1000

Fr
ac

tio
n 

of
 B

ou
nd

ed
 S

ou
rc

es

Number of Sources

Number of Classes: K=2
Number of Classes: K=3
Number of Classes: K=4
Number of Classes: K=5

(c) Fraction of Sources within 90% Confidence
Interval

Fig. 8. Changing the number of sources. PA classifier operates as an add-on to a domain classfier that misclassifies 25% of the artifacts.
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Fig. 9. Changing the number of artifacts per source. PA classifier operates as an add-on to a domain classfier that misclassifies 25% of the artifacts.
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Fig. 10. Changing the fraction of initially mislabeled artifacts

artifacts, which makes it easier for our classifier to differentiate
artifacts of different classes. Figure 12 shows the effect of
the affinity dominance of the semi-specialized sources. We
observe that the classification performance of our PA classifier
improves as the probability to generate the preferred class
(i.e., the class that dominates) by semi-specialized sources
increases. This is because the semi-specialized sources become
more specialized as the probability to generate the preferred
class increases.

In this experiment, we examined the performance of our
classifier when the internal redundancy (represented by the
average number of sources per artifact) changes. Similarly as
before, we set the number of sources to 300, the average
artifacts generated per source is set to 50. We varied the

average number of sources per artifact by changing the total
number of artifacts generated. We fixed the number of classes
at 5 and set the fraction of labeled artifacts to 0.5. The
reported results are averaged over 50 experiments and shown
in Figure 14. We observed that the classification performance
of our classifier improves as the average number of sources
per artifact increases. This is intuitive: the more sources per
artifact, the more redundancy is available to obtain better
results. We also observed that the more specialized the sources
are, the less sensitive our classifier will be to the changes in
the average number of sources per artifact.

6) Study of Scalability: In the last subsection, we studied
the scalability (in terms of execution time) of our classifier
over several basic problem dimensions. In the first experiment,
we fixed the number of artifacts as 3000 and the average num-
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Fig. 11. Changing the number of classes per source
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Fig. 12. Changing degree of affinity
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ber of artifacts generated per source as 100. We changed the
number of sources from 500 to 5000. The results are averaged
50 experiments and reported in Figure 14(a). We observed the
execution time of our classifier is linearly proportional to the
number of sources in the system. In the second experiment,
we fixed the number of sources as 1000 and the average
number of artifacts generated per source as 100. We varied
the number of total artifacts from 600 to 6000. Results are
shown in Figure 14(b). We observed that our classifier also
scales linearly to the number of artifacts of the problem. In the
last experiment, we fixed the number of sources as 1000 and
number of artifacts as 3000. We changed the average number
of artifacts per source from 50 to 500. Results are shown in
Figure 14(c). We noted that the execution time of our classifier
is insensitive to the average number of artifacts generated per
source.

This concludes our evaluation study. In this section, we eval-
uated the performance of the proposed PA classifier through
two real world applications as well as extensive simulation
experiments. The results verified that our PA classifier can
significantly improve the classification performance of tradi-
tional classifiers by only using the source ID information. The
performance of our classifier was shown to be robust and
scalable over different problem dimensions. Additionally, it
would also be interesting to examine the usage of source ID
as a feature in domain classifiers. The authors would like to
pursue this direction in the future work.

VII. LIMITATIONS AND FUTURE WORK

This paper presented a general classifier enhancement
scheme that uses source IDs to improve classification accu-
racy. Several simplifying assumptions were made that offer
directions for future work.

In this paper, sources are assumed to be independent from
each other in the sense that each source has their own
independent affinities for generating artifacts of different types.
In general, these affinities may be related. For example, if my
friends in the social network speak a given language, there is
a higher chance that I speak that language as well. This paper
does not model such dependencies.

Several solutions have recently been proposed to model
source dependencies in various special cases. One possible
method is to detect the copy relationship between sources
based on historical data [25], [26]. Another possible solution
is to study the latent information dissemination graph between
sources and understand how information are actually propa-
gated through non-independent sources [27].

Related with the source independence assumption, the input
to the proposed classifier in this paper is merely a set of arti-
facts labeled with source identities. The goal is to examine the
performance improvement of the PA classifier by leveraging
the provenance information. However, another distinguishing
feature of social signals is the underlying social networks that
capture relationships between nodes. It would be interesting
to investigate the problem of incorporating the social network
information (e.g, connections/linkages between sources) to
further improve classification accuracy.

Another interesting direction for future work is to consider
the Source ID as a feature in the domain classifiers and
compare their performance with our PA classifiers. In that
case, we might need to change the specific model of each
domain classifier to incorporate the Source ID information.
However, it would also be interesting to investigate if there will
be another general way to consider the provenance information
in classification problems without too much modification of
the original models.

It is common to observe sources have some expertise in
certain knowledge domains. For example, a biologist may
generate artifacts mainly about phylogeny of organisms while
a musician may generate artifacts regarding music genres.
Although we studied the effect of source affinity on classi-
fication performance in the evaluation, we do not explicitly
take into account prior knowledge on source expertise in our
current classifier. It is interesting to extend our model to take
into account more information about sources besides their ID.
Furthermore, the affinities of sources to generate different ar-
tifacts may change in different situations or over time. In such
case, we will need more more efficient estimation schemes
to dynamically track the changes in the source affinity. We
reserve this as a future work direction.

A few techniques have been proposed in fact-finding to
consider the hardness of facts [13], which could be generalized
and adapted for our scheme. In general, generating certain
artifacts might require a lower degree of specialization than
others. For example, in an application where artifacts are
tweets describing events, and classes of artifacts refer to
locations of these described events, many sources may tweet
about worldwide events of common interest. In this case,
such general-interest tweets give less information about their
sources. However, other tweets may be about special locations
and represent specialized local knowledge. Such specialized
knowledge is a better indicator of the locations or special
interests or their sources. Future extensions of the scheme can
therefore estimate and take into account, for different classes
of artifacts, the difficulty (or degree of specialization needed)
to generate artifacts of that class.

VIII. CONCLUSION

This paper presented a scheme to improve classification
accuracy of social signals by exploiting available source IDs.
A maximum likelihood estimation model was built to jointly
estimate source affinities and artifact classes, to assist classi-
fication tasks. An accuracy bound was derived along with the
PA classification scheme to establish confidence in analysis
results. The new scheme was evaluated through both real-
world case studies and extensive simulation experiments. The
results show that our scheme significantly improves classifica-
tion accuracy compared to traditional domain classifiers and
correctly computes confidence intervals. The work represents
the first attempt at identifying a general methodology for
improving performance of arbitrary classification tasks in
social network applications.
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