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Abstract—The localness inference problem is to identify
whether a person is a local resident in a city or not and
the likelihood of a venue to attract local people. This infor-
mation is critical for many applications such as targeted ads
of local business, urban planning, localized news and travel
recommendations. While there are prior work on geo-locating
people in a city using supervised learning approaches, the
accuracy of those techniques largely depends on a high quality
training dataset, which is difficult and expensive to obtain in
practice. In this study, we propose to exploit spatial-temporal-
social constraints from noisy online social media data to solve the
localness inference problem using an unsupervised approach. The
spatial-temporal constraint represents the correlations between
people and venues they visit and the social constraint represents
social connections between people. In particular, we develop
a Spatial-Temporal-Social-Aware (STSA) inference framework
to jointly infer i) the localness of a person and ii) the local
attractiveness of a venue without requiring any training data. We
evaluate the performance of STSA scheme using three real-world
datasets collected from Foursquare. Experimental results show
that STSA scheme outperforms the state-of-the-art techniques by
significantly improving the estimation accuracy.

Index Terms—Spatial-Temporal-Social Constraints, Localness
Inference, Localness of People, Local Attractiveness of Venues,
Online Social Media

I. INTRODUCTION

Understanding the localness of users (whether a user is
a local resident in a city or not) and local attractiveness
of venues (the likelihood of a venue to attract local users)
is important to many applications such as targeted ads for
local business [2], urban planning [10], and localized news
and travel recommendations [21]. Recent years have witnessed
an exponential growth of Location-Based Social Network
(LBSN) services where people voluntarily share their location
information through mobile applications. These services allow
users to explicitly or automatically report the GPS coordinates
(often called “check-in points”) of their visited venues in a city.
Examples of such services include Foursquare, Yelp, Gowalla,
Instagram, and Google Places. In this paper, we develop a
novel principled approach to accurately infer the localness
of users and the local attractiveness of venues using publicly
available LBSN data.

There exist prior works on geo-locating people in a city
using online social network information [3], [12], [19], [22].
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Most of these previous studies used supervised learning
approaches, which largely depend on high quality training
datasets to predict a person’s home location. However, such
training datasets are difficult and expensive to obtain in
practice since people usually are reluctant to publicize their
real home locations [20]. Furthermore, since most of LBSNs
have set up rate limits on their APIs for data collection and
sharing [43], it is very challenging to collect complete check-
in traces of users at all venues they visited. A more practical
scenario is that only partial check-in points of users in a city
for a certain period of time can be obtained for analysis. In
this paper, we prove the hypothesis that it is possible to use
such sparse and incomplete check-in data trace to accurately
estimate the localness of people and local attractiveness of
venues using an unsupervised learning approach.

Several challenges exist in order to address the problem of
inferring localness of users and local attractiveness of venues:
(i) Sparse Data Challenge: the spatial-temporal data (i.e.,
check-in points) are often incomplete and sparse: a person
might not check in at every venue he/she visits in a city or
even turn off the check-in function sometime due to privacy
concerns; (ii) Noisy Data Challenge: the collected data is
“noisy” in the sense that a venue might have check-in points
from both local and non-local people (e.g., tourists). The
check-in points are just GPS coordinates with timestamps,
which themselves do not provide much useful information to
separate local people from the non-local ones.

A simple solution is to differentiate local users from non-
local ones by analyzing the statistics of their check-in traces
such as the number of check-in points, the length of check-in
trace (the time difference between first and last check-in point
of a user) and the activity range (the largest distance among all
check-in points of a user). To investigate the feasibility of the
simple solution, we plotted the distribution of i) the number
of check-in points per user; ii) length of check-in trace; and
iii) user’s activity range of three real world datasets collected
from Chicago, Washington D.C. and Boston on Foursquare
in Figure 1, Figure 2 and Figure 3 respectively. We observed
that local and non-local users have very similar distributions
on all of three metrics. The above observation suggests that it
is challenging to solve the local inference problem by simply
analyzing the statistics of user’s check-in trace.

To address the above challenges, we develop a new unsuper-
vised approach to infer the localness of users and local attrac-
tiveness of venues in a city by exploiting Spatial-Temporal-
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Figure 1: Distribution of Number of Check-in Points for Local
and Non-Local Users
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Figure 2: Distribution of Length of Check-in Trace for Local
and Non-Local Users
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Figure 3: Distribution of Activity Range for Local and Non-
Local Users

Social constraints from social media. In particular, we develop
a Spatial-Temporal-Social-Aware (STSA) framework to infer
the localness of people by considering the venues they visited
and their activity range (spatial), the time length of their check-
in traces (temporal) and the social connections between people
(social). Our framework can jointly estimate i) the localness
of a person and ii) the attractiveness of a venue without
requiring any training data. We evaluate our new approach
using three real-world datasets collected from Foursquare. The
results showed that STSA scheme outperforms the state-of-
the-art techniques by significantly improving the estimation
accuracy. The results of this paper are important because they
provide accurate estimations on the localness of users and local
attractiveness of venues, which are important elements in many
recommendation and smart city applications [16], [31].

Finally, a note on disclaimer. First, we did not discuss
the privacy issue in this paper because the user identities
in collected datasets from LBSNs are all anonymized [11].
Additionally, there exists a rich set of literature on the topic
of protecting user’s privacy in online social media applica-
tions [40]. These works can be used to address the privacy
challenges if there is such a need. Second, we did not use any
private data from a third party (e.g., Google Map search data,
which could make the localness inference problem a trivial
problem to solve). Instead, we only used publicly available
data from LBSNs with the goal to develop a new unsupervised
localness inference scheme as an open-source resource for the
research community.

The main contributions of this paper can be summarized as

follows:
• We study the localness inference problem using an unsu-

pervised approach by exploiting spatial-temporal-social
constraints extracted from the sparse and noisy online
social media data. (Section III)

• We develop a principled STSA framework that allows us
to derive an optimal solution that is most consistent with
users’ check-in data traces and their social connections.
(Section IV)

• We perform extensive experiments to compare the perfor-
mance of our STSA framework and other the-sate-of-the-
art baselines using three large scale real-world data sets
collected from Foursquare. Experimental results demon-
strate that the proposed approach outperforms existing
methods by significantly improving estimation accuracy.
(Section V)

II. RELATED WORK

User Profiling. User profiling is an important problem in
social media analysis. Previous works have made significant
progress towards addressing this problem [1], [8], [17], [28].
For example, Mislove et al. proposed a community detection
approach to infer the missing attributes of a user on Facebook
from the attributes of his/her friends in the network [28].
Abel et al. developed a semantic approach to construct the
user’s profile on Twitter by exploiting the links between the
user’s tweets and related news articles [1]. Dong et al. studied
human interactions on demographics profiles by investigating
mobile social network [8]. Li et al. studied the problem of user
profiling by capturing the correlation between attributes and
social connections of the user’s ego networks [17]. However,
none of these techniques can be directly applied to infer the
localness of users and local attractiveness of venues in a city
because i) people may have social connections with friends
living far away; ii) people may also report news/events that
are not local to the city they live. In this paper, we solve the
localness inference problem by using the publicly available
check-in data trace from LBSN.

Localized Recommendation Systems. Our work is also
related to localized recommendation system [5], [9], [21],
[41]. In particular, Macedo et al. solved the local event
recommendation problem using a learning-to-rank approach
that leverages multiple context-aware recommendation models
as features [21]. Chen et al. proposed a greedy algorithm
that leverages the information coverage to encode the location
categories in its recommendations [5]. Yin et al. developed a
LCA-LDA probabilistic model to infer both the item content
and the local preference in its recommendation [41]. Gao et
al. studied the content information on LBSNs for POI recom-
mendation [9]. Our work is complementary to the above rec-
ommendation systems in the sense that the correctly estimated
localness of users and local attractiveness of venues are critical
for more accurate and effective localized recommendations.

Truth Discovery in Social Sensing. Our work is also
related to the work on truth discovery in social sensing applica-
tions [13]–[15], [32]–[36]. In particular, Wang et. al developed
an estimation theoretical framework to solve the truth dis-
covery problem (i.e., joint estimation of the source reliability



and claim correctness without prior knowledge on either of
them) in social sensing applications [32]–[35]. Chao et. al
extended the truth discovery framework to consider additional
features of the problem such as time, location, confidence and
topic relevance [13]–[15], [36]. Marshall et al. further explored
the semantic dimension of the truth discovery problem and
considered features such as emotion, claim hardness and mood
sensitivity in the truth discovery solutions [24]–[26], [39].
This paper leveraged the insights of the above truth discovery
solutions and addressed a new problem of inferring localness
of users and local attractiveness of venues using online social
media data. The proposed framework incorporates spatial,
temporal and social constraints in the solution.

Geo-locating People. Finally, our work is closely related to
the works that address the problem of geo-locating people in
a city [3], [6], [19], [22]. For example, Cheng et al. proposed
a probabilistic framework to estimate a Twitter user’s location
at the city level purely based on the content of the user’s
tweets [6]. Backstrom et al. estimated a user’s location by
exploring both the geographic and social relationship between
users [3]. Li et al. [19] developed a system to infer a user’s
location by integrating network and user-centric data via a
unified influence model. T Mahmud et al. [22] proposed a
hierarchical ensemble algorithm to predict the home location
of users by leveraging the domain knowledge and advanced
classifications. However, the above solutions used supervised
learning approaches, which require sufficient training data with
complete spatial-temporal information to accurately estimate
an individual’s home location. In contrast, this paper developed
an unsupervised learning approach to address the problem of
inferring the localness of user and the local attractiveness of
venues that does not require any training data.

III. PROBLEM FORMULATION

In this section, we formulate the problem of inferring the
localness of users and local attractiveness of venues in a city
as a maximum likelihood estimation problem. In particular, we
consider a set of X venues in a city, namely, V1, V2,...,VX ,
which have check-in points from a set of Y users, namely, U1,
U2,..,UY . Let Vx represent the xth venue and Uy represent the
yth user. We define Uy = 1 if the user is a local resident of
the city and Uy = 0 if he/she is not. We further define the
following inputs to our model.
• Definition 1. Check-in Matrix CI. We define Check-in

Matrix CIX×Y to indicate who visit where. In particular,
CIx,y = 1 indicates that user Uy has check-in points at
venue Vx and CIx,y = 0 otherwise.

• Definition 2. Temporal Vector T. We define a Temporal
Vector TY to represent the time length of user’s check-
in points. In particular, ty = k denotes that user Uy’s
check-in points in a city lasts for k days.

• Definition 3. Spatial Vector S. We define a Spatial Vector
SY to represent the activity range of user’s check-in
points. In particular, sy = h denotes that the the largest
distance among all check-in points of the user Uy is h
miles.

• Definition 4. Social Relationship Matrix SR. We define
a Social Relationship Matrix SRY×Y to represent the

social connections between users. In particular, SRy,y′ =
1 if there exists social connection between two users
Uy, Uy′ and SRy,y′ = 0 otherwise.

First, let us define a few important terms that will be used in
the problem formulation. We denote the local attractiveness
of a venue Vx as lax, which is the probability that a user
is local given that the user has check-in points at the venue
Vx. Furthermore, considering a user may have different time
length and activity range of his/her check-in points, we define
lax,k,h as the probability of a venue Vx to attract local users
whose check-in points in a city last for k days and the activity
range is h miles. Formally, lax and lax,k,h can be given as:

lax = Pr(Uy = 1|CIx,y = 1)

lax,k,h = Pr(Uy = 1|CIx,y = 1, ty = k, sy = h) (1)

We denote the prior probability that venue Vx is visited by a
user whose check-in points lasts for k days and activity range
is h miles by rx,k,h. The relationship between lax and lax,k,h
can be expressed as:

lax = ΣK
k=1ΣH

h=1lax,k,h ×
rx,k,h
rx

k ∈ [1,K];h ∈ [1, H]

(2)

where rx = Pr(CIx,y = 1) and rx,k,h = Pr(CIx,y = 1, ty =
k, sy = h). Note that rx = ΣK

k=1ΣH
h=1rx,k,h. Let us further

define Ex,k,h to denote the probability of a local user whose
check-in points in a city lasts for k days and activity range
is h miles visits a venue Vx. Similarly, let Fx,k,h denote the
probability of a non-local user whose check-in points in a city
lasts for k days and activity range is h miles visits a venue
Vx. Ex,k,h and Fx,k,h are formally defined as:

Ex,k,h = Pr(CIx,y = 1, ty = k, sy = h|Uy = 1)

Fx,k,h = Pr(CIx,y = 1, ty = k, sy = h|Uy = 0) (3)

We denote the prior probability that a randomly chosen user
is local by q, Using Bayes’ theorem, we have:

Ex,k,h =
lax,k,h × rx,k,h

q
, Fx,k,h =

(1− lax,k,h)× rx,k,h
1− q

(4)

Inferring the Localness of Users and Local Attractive-
ness of Venues. The problem of inferring the localness of users
and local attractiveness of venues is formulated as follows:
given the Check-in Matrix CIX×Y , Temporal Vector TY ,
Spatial Vector SY and Social Relationship Matrix SRY×Y ,
the goal is to jointly estimate both the localness of each user
and the probability of each venue in a city to attract local
people. Formally, we compute:

∀y, 1 ≤ y ≤ Y : P (Uy = 1|CI, T, S, SR)

∀x, 1 ≤ x ≤ X : P (Uy = 1|CIx,y = 1) (5)

IV. THE SPATIAL-TEMPORAL-SOCIAL-AWARE (STSA)
FRAMEWORK

In this section, we present the Spatial-Temporal-Social-
Aware (STSA) framework to solve the localness inference
problem by exploring the spatial-temporal-social constraints



embedded in the online social media data. The framework
consists of two major components: Spatial-Temporal Modeling
and Social-Aware Localness Inference. The overview of the
framework is shown in Figure 4.
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Figure 4: The STSA Framework

A. Spatial-Temporal Modeling

We first present the Spatial-Temporal Modeling component
of the STSA framework. EM is an optimization scheme
that is commonly used to solve the MLE problem where
unobserved latent variables exist in the model [7]. Specifically,
it iterates between two key steps: expectation step (E-Step)
and maximization step (M-step). In E-step, it computes the
expectation of the log likelihood function based on the current
estimates of the model parameters. In M-step, it computes
the new estimates of the model parameters that maximize the
expected log-likelihood function in E-step.

Given the terms we defined in the previous section, the
likelihood function that describes the user’s check-in behavior
together with the spatial-temporal constraints is given follows:

L(Θ;O,Λ) = Pr(O,Λ|Θ)

=

Y∏
y=1

Pr(λy|Oy,Θ
(n))×

X∏
x=1

K∏
k=1

H∏
h=1

Ψx,y,k,h × Pr(λy) (6)

where Θ = (E1,k,h, ..., EX,k,h;F1,k,h, ..., FX,k,h; q). O is the
observed data (i.e., Matrix CI , Vector T and S). Λ is a set
of latent variables that indicate whether a user is local or not.
More specially, we have a corresponding variable λy for each
user Uy such that λy = 1 if Uy is local and λy = 0 otherwise.
Additional variables are defined in Table I.

Table I: Notations for Spatial-Temporal Modeling

Ψx,y,k,h Pr(λy) Λ(n, y) Spatial-Temporal Constrains

Ex,k,h q Pr(Uy = 1|Oy ,Θ(n)) CIx,y = 1, ty = k, sy = h, λy = 1

1−
∑K

k=1

∑H
h=1 Ex,k,h q Pr(Uy = 1|Oy ,Θ(n)) CIx,y = 0, ty = k, sy = h, λy = 1

Fx,k,h 1− q Pr(Uy = 0|Oy ,Θ(n)) CIx,y = 1, ty = k, sy = h, λy = 0

1−
∑K

k=1

∑H
h=1 Fx,k,h 1− q Pr(Uy = 0|Oy ,Θ(n)) CIx,y = 0, ty = k, sy = h, λy = 0

Given the above mathematical formulation, we develops
an Expectation and Maximization (EM) scheme to solve the
problem. The E-step is derived as follows:

Q(Θ|Θ(n)) = EΛ|O,Θ(n) [logL(Θ;O,Λ)]

=

Y∑
y=1

Λ(n, y)×
X∑

x=1

(logΨx,y,k,h + logPr(λy)) (7)

where Λ(n, y) is defined in Table I and n is the iteration index.
For the M-step, in order to get the optimal Θ∗ that maxi-

mizes the Q function, we set partial derivatives of Q(Θ|Θ(n))
with respect to Θ to 0. We can get the optimal estimation
of the parameters for the next iteration (i.e., (Ex,k,h)(n+1),
(Fx,k,h)(n+1) and (q)(n+1)) as follows:

E∗x,k,h =
Σy∈CVx,k,h

Pr(λy = 1|Oy,Θ
(n))

ΣY
y=1Pr(λy = 1|Oy,Θ(n))

F ∗x,k,h =
Σy∈CVx,k,h

(1− Pr(λy = 1|Oy,Θ
(n)))

ΣY
y=1(1− Pr(λy = 1|Oy,Θ(n)))

q∗ =
ΣY

y=1Pr(λy = 1|Oy,Θ
(n))

Y
(8)

where CVx,k,h is the set of users who visit the venue Vx
and the check-in points of these users last for k days and the
activity range of those users is h miles.

B. Social-Aware Localness Inference

In this section, we demonstrate how we can optimize
the inference process by leveraging both Cramer-Rao lower
bounds (CRLB) of estimation results obtained in the previous
subsection and the social connections between users.

The CRLB is defined as the inverse of Fisher information:
CRLB = J−1, where J is the Fisher information of the
estimation parameter. The CRLB can be used to obtain ap-
proximate confidence bounds of the maximum likelihood esti-
mation [29]. Using the likelihood function from Equation (6)
and the results of estimation parameters from Equation (8), we
can compute CRLB to quantify the accuracy of our solution
using a similar method we developed in [37].

In particular, we can assess the estimation accuracy of
the estimation on lax by computing its confidence bounds.
Formally, the confidence bounds of lax are given as:

(l̂a
MLE

x − cp
√
var( ˆlax

MLE
), ˆlax

MLE
+ cp

√
var( ˆlax

MLE
))

(9)

where cp is the standard score of confidence level p.
var( ˆlax

MLE
) is the estimation variance on lax, which can

be computed from CRLB based on Equation (4).
Using the computed CRLB, we can compute the confidence

bound cbx on the local attractiveness estimation of each venue.
We further define EAy to represent the estimation accuracy
of a user’s localness. Given the Check-in matrix CI , EAy can
be computed as:

EAy =

∑
x∈CVy

(cbx)

|CVy|
(10)

where CVy is the set of venues user Uy has check-in points.
We then optimize the inference of a user’s localness as

follows: if a user Uy’s localness estimation accuracy EAy is



less than a certain threshold (we use 0.5 in our experiment) and
have social connections with others, we compute an optimized
localness of Uy by leveraging its social constraints (i.e., SR
Matrix). In particular, we define the objective function of our
problem as follows:

f =
∑
y∈SU

∑
y′∈SRy

|Λ∗y − Λ′y| · w(y, y′) (11)

where SU is the set of users who have social connections,
SRy is the set of users who have social connections with
user Uy . w(y, y′) is the strength of social connection between
user Uy and Uy′ , which is reflected by the number of same
venues the two users visited together. Additionally, Λ∗y is the
optimized inference of localness estimation of user Uy and
Λy′ is the localness estimation of user Uy′ from the Spatial-
Temporal Modeling component. The goal is to find the Λ∗y
for every user in SU that minimizes the defined objective
function. This optimization problem can be solved in linear
time using weighted median algorithm [4]. We summarize the
STSA scheme in Algorithm 1.

Algorithm 1 STSA Algorithm
Input: Check-in Matrix CI , Temporal Vector T , Spatial Vector S and Social
Relationship Matrix SR
Output: Estimations of Venue’s Local Attractiveness and User’s Local-
ness
1: Initialize Θ (Ex,k = rx,k, Fx,k = 0.5× rx,k , q ∈ (0, 1))
2: n = 0
3: repeat
4: n = n+ 1
5: for Each y ∈ U do
6: compute Pr(λy = 1|Oy ,Θ(n))
7: end for
8: for Each x ∈ V do
9: compute (Ex,k)(n), (Fx,k)(n), (q)(n)

10: end for
11: until Θ(n) and Θ(n−1) converge
12: Let (Λy)c = converged value of Pr(λy = 1|Oy ,Θ(n))
13: for Each x ∈ V do
14: compute abx based on Equation (9)
15: end for
16: for Each y ∈ SU do
17: compute EAy based on Equation (10)
18: if EAy ≥ 0.5 then
19: compute Λ∗

y in Equation (11)
20: Λy ← Λ∗

y
21: end if
22: end for
23: for Each y ∈ U do
24: if (Λy)c ≥ threshold value then
25: user Uy is local
26: else
27: user Uy is non-local
28: end if
29: end for
30: for Each x ∈ V do
31: calculate (lax,k,h)∗ from converge values of (Ex,k,h), (Fx,k,h) and

(q) based on Equation (2)
32: end for

V. EVALUATION

In this section, we conduct experiments to evaluate the
performance of the Spatial-Temporal-Social-Aware (STSA)
scheme on three real-world data traces collected from a
location-based social network service: Foursquare. We demon-
strate the effectiveness of our proposed framework on these

data traces and compare the performance of our scheme to
the state-of-the-art baselines. In the rest of this section: (i)
we present the experiment settings and data pre-processing
steps that were used to prepare the data for evaluation. (ii) We
introduce the state-of-the-art baselines and evaluation metrics
we used in our experiments. (iii) We present the evaluation
results that demonstrate the STSA scheme can estimate the
localness of users and local attractiveness of venues in a city
more accurately than the compared baselines.

A. Experiment Setups and Evaluation Metrics
1) Data Trace Statistics: In this paper, we evaluate our

proposed scheme on three real-world data traces collected
from Foursquare. In Foursquare, users can easily share their
location information (i.e., check-in points) at different venues
they visit in a city. Each check-in point is formatted as: (user
ID, venue ID, timestamp). The data traces we collected also
contain home location information of users, which serves as
the ground truth to decide the localness of users in our evalu-
ation. One should note that such home location information is
not available for all users in all cities [31], which is the main
motivation to develop STSA scheme to infer the localness of
users and local attractiveness of venues in a city from their
check-in points. In the evaluation, we selected the data traces
from three cities in U.S where the ground truth information
is available 1: Chicago, Washington D.C. and Boston. The
statistics of these traces are summarized in Table II.

Table II: Data Traces Statistics

Data Trace Chicago Washington D.C. Boston
Number of Users 31,615 17,070 12,804
Number of Venues 2,529 1,932 1,478
Number of Check-ins 48,605 25,722 18,296

2) Data Pre-Processing: To evaluate our methods in real
world settings, we went through the following data pre-
processing steps: (i) Check-in Matrix (CI Matrix) Generation;
(ii) Temporal Vector (T Vector) Generation; (iii) Social Rela-
tionship Matrix SR Generation.
• Check-in Matrix Generation: We generate the CI Matrix

by associating each venue with the users who visited this
venue. In particular, if user Uy visited venue Vx in the
data trace, we set the element CIx,y in CI to 1 and 0
otherwise.

• Temporal Vector Generation: we generate the T vector
by setting the corresponding element as the time length
of the user’s check-in trace in a city. In particular, ty = k
if the difference between the first and last check point of
user Uj in a city is k days.

• Activity Vector Generation: we generate the S vector by
setting the corresponding element as the user’s activity
range in a city. In particular, sy = h if the activity range
of user Uy in a city is h miles.

• Social Relationship Matrix Generation: We generate the
SR Matrix as follows: if user Uy and user Uy′ have a
social connection, we set the element SRx,y in SR to 1
and 0 otherwise.

1https://archive.org/details/201309 foursquare dataset umn



3) Evaluation Metric: In the experiments, we use two
category of evaluation metrics to evaluate the performance
of STSA scheme. The first category of metrics are used to
evaluate the estimation accuracy of different techniques in
terms of inferring the localness of users. They include accu-
racy, precision, recall, F1-score [23]. The second category of
metric is used to evaluate the estimation accuracy of the local
attractiveness of venues defined in Section III. We use the
term Root Mean Squared Error (RMSE) to characterize the
difference between the estimation value and ground truth value
of a venue’s local attractiveness. The mathematical definitions
of the above metrics are given in Table III.

Table III: Metric Definitions

Metric Definition

Accuracy TP+TN
TP+TN+FP+FN

Precison TP
TP+FP

Recall TP
TP+FN

F1-score 2×Precison×Recall
Precison+Recall

RMSE

√∑X
x=1(la

grouthtruth
x −lax)2

X

In Table III, TP, TN, FP and FN represents True Pos-
itives, True Negatives, False Positives and False Negatives
respectively. In our experiment, the True Positives and True
Negatives are the users that are correctly classified by a
particular scheme as local or non-local respectively. The False
Positives and False Negatives are the non-local and local users
that are misclassified to each other respectively.

B. Evaluation of Our Scheme

In this subsection, we evaluate the performance of the
proposed ULI scheme and compare it to the state-of-the-art
techniques as follows:
• MLP: it proposes a generative probabilistic approach that

infers a user’s locations by leveraging the home locations
of the user’s online friends [18].

• FM: it infers a user’s location by utilizing the home
locations of people that visit similar places as the user [3].

• FL: it proposes a network-based approach that leverages
the evidence of social tie strength between users [27].

• HLI: it proposes a machine learning approach that locate
people’s home location by integrating the spatial and
temporal features of people’s trajectories [12].

• Reg-EM: it solves the localness inference problem using
a similar EM approach but does not consider temporal
and social information [38].

• Average Log: it infers the localness of a user by con-
sidering both the location and the number of venues the
user visits [30].

• TruthFinder: it estimates the localness of a user using a
heuristic based pesudo-probabilistic model [42].

• LC-based: it assumes the localness of a user is reflected
by the length of his/her check-in trace: the longer the
length of check-in trace, the more likely the user is local.

• AR-based: it assumes the localness of a user is reflected
by his/her activity range: the smaller the activity range,
the more likely the user is local.

• Freq-based: it assumes the localness of a user is reflected
by the number of venues he/she visited in a city: the more
venues a user visits, the more likely the user is local.

STSA scheme differs from the above schemes in that it is an
unsupervised approach which does not require any information
on i) the home locations of the targeting users or their friends;
and ii) the news or content (e.g., tweets, blogs) generated by
users. Instead, it judiciously uses the venue locations, user
visiting behavior and the social connections between users to
solve the localness inference problem.

1) Evaluation Results: In our evaluation, we evaluated the
above schemes using the ground truth information (i.e., home
locations of users). In particular, a user is decided as a local
user in a city if the user’s home location is within X miles
from the center of the city. To evaluate the robustness of all
compared schemes, we evaluated the performance of them
over different values of X (e.g., 15 miles, 30 miles, 50 miles
and 100 miles), ranging from the core part of the city to the
suburbs to the satellite towns.

The evaluation results of Chicago data trace are shown in
Table IV. We observe that STSA outperforms the compared
baselines in all evaluation metrics: it finds the most number
of local users while keeping the falsely reported one the
least. It also has the smallest error on the estimation of the
local attractiveness of venues. The largest performance gain
achieved by STSA on accuracy and F1-measure over the best
performed baseline on 15 miles threshold value are 13% and
10% respectively. The results are also consistent over different
X (distance threshold) values.

We repeated the above experiments on Washington D.C
and Boston data trace. Considering the space limit, we only
present the evaluation results for X=15 miles. The results
on Washington D.C and Boston data traces are shown in
Table V and Table VI respectively. In those tables, we observe
that STSA continuously outperforms all compared baselines
with nontrivial performance gains. The performance improve-
ments of STSA are achieved by i) explicitly considering
spatial-temporal-social constraints from social media data; ii)
carefully handling the nonlinear relationship between the users
localness and the venue’s local attractiveness.
Table V: Estimation Results on Washington D.C. Trace (X=15
miles)

Algorithm Accuracy Precision Recall F1 RMSE

STSA 0.691 0.710 0.825 0.761 0.387
MLP 0.501 0.594 0.509 0.548 0.509
FM 0.493 0.601 0.504 0.548 0.522
FL 0.504 0.636 0.507 0.565 0.491
HLI 0.557 0.606 0.732 0.663 0.502
Reg-EM 0.523 0.586 0.674 0.627 0.581
Average Log 0.547 0.643 0.538 0.586 0.600
TruthFinder 0.445 0.541 0.451 0.492 0.660
LC-based 0.627 0.722 0.607 0.659 0.426
AR-based 0.479 0.574 0.481 0.523 0.550
Freq-based 0.522 0.617 0.516 0.562 0.575

Furthermore, we validate the derived CRLBs and the per-
formance bounds of the proposed STSA scheme discussed in
Section IV. In particular, we randomly sampled 40 venues



Table IV: Estimation Results on Chicago Trace

X=15 miles X=30 miles

Algorithm Accuracy Precision Recall F1 RMSE Accuracy Precision Recall F1 RMSE

STSA 0.731 0.760 0.907 0.827 0.435 0.765 0.804 0.908 0.853 0.421
MLP 0.449 0.648 0.433 0.519 0.649 0.476 0.681 0.447 0.539 0.662
FM 0.452 0.724 0.382 0.501 0.652 0.477 0.749 0.407 0.528 0.669
FL 0.514 0.722 0.523 0.607 0.534 0.514 0.768 0.517 0.618 0.607
HLI 0.597 0.709 0.732 0.720 0.598 0.612 0.749 0.726 0.738 0.614
Reg-EM 0.600 0.692 0.785 0.736 0.547 0.620 0.730 0.783 0.755 0.549
Average Log 0.525 0.735 0.517 0.607 0.567 0.521 0.772 0.513 0.617 0.578
TruthFinder 0.473 0.684 0.478 0.563 0.613 0.474 0.726 0.480 0.578 0.628
LC-based 0.539 0.748 0.528 0.619 0.566 0.551 0.801 0.534 0.641 0.569
AR-based 0.528 0.739 0.518 0.609 0.554 0.522 0.773 0.512 0.616 0.565
Freq-based 0.452 0.731 0.359 0.482 0.573 0.434 0.764 0.355 0.484 0.590

X=50 miles X=100 miles

Algorithm Accuracy Precision Recall F1 RMSE Accuracy Precision Recall F1 RMSE

STSA 0.774 0.814 0.908 0.859 0.415 0.778 0.825 0.904 0.863 0.409
MLP 0.483 0.690 0.448 0.544 0.663 0.456 0.660 0.430 0.520 0.667
FM 0.461 0.718 0.412 0.523 0.675 0.443 0.711 0.377 0.493 0.682
FL 0.517 0.775 0.525 0.626 0.533 0.501 0.782 0.504 0.613 0.540
HLI 0.602 0.750 0.713 0.731 0.616 0.643 0.779 0.750 0.764 0.623
Reg-EM 0.623 0.738 0.782 0.759 0.552 0.633 0.752 0.783 0.767 0.547
Average Log 0.518 0.778 0.511 0.617 0.583 0.520 0.793 0.512 0.622 0.585
TruthFinder 0.470 0.732 0.478 0.578 0.635 0.468 0.742 0.477 0.581 0.639
LC-based 0.550 0.809 0.533 0.643 0.574 0.548 0.820 0.531 0.645 0.579
AR-based 0.521 0.782 0.512 0.619 0.565 0.524 0.798 0.514 0.625 0.561
Freq-based 0.507 0.768 0.501 0.607 0.593 0.425 0.784 0.354 0.487 0.599

Table VI: Estimation Results on Boston Trace (X=15 miles)

Algorithm Accuracy Precision Recall F1 RMSE

STSA 0.626 0.652 0.820 0.726 0.424
MLP 0.488 0.580 0.503 0.539 0.485
FM 0.512 0.607 0.627 0.617 0.479
FL 0.484 0.629 0.502 0.558 0.526
HLI 0.562 0.611 0.761 0.678 0.491
Reg-EM 0.540 0.596 0.743 0.661 0.527
Average Log 0.529 0.635 0.522 0.573 0.596
TruthFinder 0.476 0.581 0.477 0.524 0.580
LC-based 0.569 0.674 0.557 0.610 0.483
AR-based 0.479 0.585 0.480 0.527 0.579
Freq-based 0.514 0.620 0.510 0.560 0.531

from each city data trace and computed the confidence bounds
of the local attractiveness values of these sampled venues.
The results are shown in Figure 5. We can observe that there
are only 4, 3 and 3 out of 40 venues whose ground-truth
local attractiveness values fall out of the 90% confidence
bounds on the Chicago, Washington D.C and Boston data trace
respectively. These results validate that our derived confidence
bounds correctly characterize the estimation errors of venue’s
local attractiveness at a given confidence level.

The above evaluation results from real world data traces
demonstrate that the proposed STSA scheme can accurately
infer the localness of users and local attractiveness of venues
and achieved significant performance improvements over the
baselines without using any training data.

VI. CONCLUSION

This paper proposes an unsupervised approach to jointly in-
fer the localness of users and local attractiveness of venues by
jexploiting spatial-temporal-social constraints from the social
media data. We evaluate our framework using three real-world
datasets collected from Foursquare. The results showed that
the STSA framework outperforms the state-of-the-art baselines
by significantly improving the estimation accuracy.
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