
RiskCast: Social Sensing based Traffic Risk
Forecasting via Inductive Multi-View Learning

Yang Zhang, Hongxiao Wang, Daniel Zhang, Yiwen Lu, Dong Wang
Department of Computer Science and Engineering

University of Notre Dame
Notre Dame, IN, USA

{yzhang42, hwang21, yzhang40, ylu9, dwang5}@nd.edu

Abstract—Road traffic accidents are a major challenge in
urban transportation systems. An effective countermeasure to
address this problem is to accurately forecast the traffic risks in
a city before accidents actually happen. Current traffic accident
prediction solutions largely rely on accurate data collected from
infrastructure-based sensors, which is not always available due
to various resource constraints or privacy and legal concerns. In
this paper, we address this limitation by exploring social sensing,
a new sensing paradigm that uses humans as sensors to report
the states of the physical world. In particular, we consider two
types of publicly available social sensing data sources: social
media data (e.g., traffic posts on Twitter) and open city data
(e.g., traffic data from the city web portal). In this paper, we
develop the RiskCast, an inductive multi-view learning approach
to accurately forecast the traffic risk by exploiting the social
sensing data under a principled co-regularization framework.
The evaluation results on a real world dataset from New York
City show that RiskCast significantly outperforms the state-of-
the-art baselines in forecasting the traffic risks in a city.

I. INTRODUCTION

Social Sensing has emerged as a new sensing paradigm
where humans (or devices on their behalf) collectively report
measurements about the physical world [1]. Examples of social
sensing include real-time traffic condition monitoring using
mobile crowdsensing [2] and obtaining real-time situation
awareness for disaster response using online social media [3].
Intelligent transportation system (ITS) is a critical application
domain where sensing, communication, and control techniques
are used to improve safety and efficiency of the transportation
systems [4]. Current ITS applications primarily rely on various
types of infrastructure-based sensors (e.g., speed sensors,
CCTV cameras, loop detectors) to collect real-time traffic
information [4]. However, such infrastructure-based sensors
are not always available due to the resource constraints,
privacy concerns, and legislation [5]. In contrast, social sensing
provides an infrastructure-free solution [6] that is more
pervasive and scalable than the traditional solutions for ITS

applications by exploring the open and publicly available data
from human sensors (e.g., social media data and traffic reports
published by a city) [7]. In this paper, we focus on a social
sensing based traffic risk forecasting problem, where the goal
is to accurately forecast the traffic risks (i.e., the probability of
the traffic accidents) at a fine-grained spatial granularity (e.g.,
a road intersection in city).

Recent progress has been made to address the traffic risk
prediction problem in intelligent transportation systems, ge-
ographical information systems, and data mining communi-
ties [8]–[10]. However, these solutions cannot be directly
adapted to solve our problem because they largely rely on
accurate traffic sensor data collected from infrastructure
monitoring devices (e.g., traffic cameras, radar detectors, GPS
sensors) in the traffic systems. However, such monitoring
devices and data may not always be available [5]. For example,
less than 3% US cities install road traffic cameras and traffic
monitoring devices are prohibited by 10 states in US 1. In
New York City (NYC), more than 85% of the fatal and serious
injury crashes happen at locations where the traffic monitoring
devices are not available 2.

To address the above limitation, we develop a social sensing
based traffic risk forecasting scheme that does not depend on
the infrastructure-based sensors and monitoring devices. In
particular, we consider two types of widely available social
sensing data sources: social media data and open city data
(as shown in Figure 1). For social media data, we refer
to the traffic related claims people have posted on online
social media (e.g., real-time tweets collected from the Twitter
API). For the open city data, we refer to traffic accident
reports published by the city governments (e.g., motor vehicle
collision reports periodically updated by the New York police
department). Both types of data are generated by human
sensors (e.g., Twitter users and police officers) but have
different yet complementary characteristics [11]. In particular,
the social media data is often timely but sparse in terms of
accident coverage [12]. In contrast, the open city data has a
good accident coverage but is less timely due to delays in the
data collection, processing, and review process [13]. In this

1https://www.iihs.org/iihs/topics/laws/automated enforcement/
enforcementtable?topicName=speed

2https://www1.nyc.gov/office-of-the-mayor/news/403-17/visionzeromayor-
deblasiofamiliesseniorsofficialscallexpansionlifesaving#0
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paper, we develop RiskCast, a social sensing based multi-view
learning scheme that explores the benefits from both types of
social sensing data for the urban traffic risk forecast. To the
best of our knowledge, the RiskCast is the first social sensing
based solution to address the traffic risk forecasting problem in
intelligent transportation systems using a multi-view learning
approach. We evaluate the RiskCast scheme on a real-world
traffic dataset from New York City. The results show that our
scheme significantly outperforms the state-of-the-art baselines
in various application scenarios.

(a) Accident Reported on Social Media Data

(b) Accident Recorded in Open City Data

Figure 1. Example of Social Sensing Data for Traffic Risk Forecasting

II. RELATED WORK ON TRAFFIC RISK PREDICTION

Previous efforts have made good progress to address the
traffic risk prediction related problems in intelligent transporta-
tion systems, geographical information systems, and data min-
ing communities [8]–[10]. For example, Lin et al. developed
a frequent pattern tree based approach to predict the traffic
risk using traffic data collected from interstate highways [8].
Sun et al. proposed a dynamic Bayesian network based model
to predict car crashes using the traffic speed data collected
from freeway traffic sensors [9]. Shi et al. developed a random
forest and Bayesian inference based framework for real-time
traffic safety prediction using the data collected from traffic
loop detectors deployed on urban expressways [10]. These
approaches cannot be directly adapted to solve our traffic
risk forecasting problem because they rely on a large amount
of accurate traffic sensor data collected from infrastructure
monitoring devices, which are not always available due to
resource and legal constraints [5]. In contrast, we develop a
novel multi-view co-regularization learning scheme to address
the traffic risk forecasting problem by taking advantage of
social sensing, which collects traffic information from human
sensors.

III. PROBLEM DEFINITION

In this section, we formulate the traffic risk forecasting
problem in intelligent transportation systems. We first define
the terms that will be used in the problem statement.

Definition 1: Sensing Cell (SC): We divide the sensing area
(e.g., New York City) into disjoint sensing cells where each
cell represents a subarea of interest. In particular, we define
C to be the number of cells in the sensing area and SCc to
be the cth sensing cell in the sensing area (c = 1, 2, · · · , C).

Definition 2: Social Media Data (SD): We define the Social
Media Data (SD) to be the self-reports about traffic accidents
from social media users (e.g., tweets shown in Figure 1(a)).

Definition 3: Open City Data (OD): We define the open
city data (OD) to be the publicly accessible traffic accident
reports published by cities (e.g., accidents reports published
by NYC Police department shown in Figure 1(b)).

Definition 4: Forecasting Window: A Forecasting window
is a period of time in the upcoming future where we predict the
traffic risk in a city based on the social sensing data collected
before the forecasting window. In particular, we define T to
be the total number of forecasting windows in the traffic risk
forecasting application and t to be the tth forecasting window.

Definition 5: Traffic Accident Rate (Y ): In this paper, we
use the Traffic Accident Rate (Y ) to indicate the traffic risk
level of a location in a city at a given time. In particular, we
define Y c

t and Ŷ c
t to be real and estimated traffic accident

rate of cell SCc at forecasting window t, respectively.
Using the above definitions, we can formally define our

traffic risk forecasting problem. The goal is to correctly
forecast the traffic accident rate of each sensing cell at each
forecasting window based on the collected social sensing data
SD and OD. Formally, our problem is defined as:

argmin
Ŷ c
t

(
1

C
·

C∑
c=1

1

T
·

T∑
t=1

abs(Y c
t − Ŷ c

t ) | SD,OD,SC, T )

(1)

where abs() is function to generate the absolute value of a
given number.

IV. SOLUTION

In this section, we present RiskCast to address the traffic
risk forecasting problem formulated in the previous section.

A. Sensing Feature Extraction & View Construction (SFEVC)

In this subsection, we describe the SFEVC component to
extract the traffic accident features from unstructured social
media data and open city data.

In particular, for social media data SD, we extract the
location ls of each social media post s in SD by analyzing the
content of social sensing data using location-specific regular
expressions [14]. Then, the extraction of the accident time ts
from social media post s can be achieved by checking the
timestamp of the data sample [15] (e.g., the “created at” field
of a tweet). For open city data OD, we can query the open
city database 3 to obtain the accident location lo and time to
for each traffic accident report o in OD. Finally, we convert
the extracted time ts and location ls from social media posts
as the social media data view and the extracted time to and
location lo from the open city traffic reports as the open city
data view as follows: Xc

SD = {(ls, ts)|ls ∈ SCc,∀s ∈ SD},
∀SCc ∈ SC

Xc
OD = {(lo, to)|lo ∈ SCc,∀o ∈ OD},

(2)

3https://data.cityofnewyork.us/Public-Safety/NYPD-Motor-Vehicle-
Collisions/h9gi-nx95
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where Xc
SD and Xc

OD are the social media data view and
open city data view at sensing cell SCc, respectively, which
will serve as the inputs to the IMVCL component discussed
in the next subsection.

B. Inductive Multi-View Co-Regularized Learning (IMVCL)

In this subsection, we describe the Inductive Multi-view Co-
Regularized Learning (IMVCL) component that forecasts the
traffic risk of each sensing cell by exploring the two social
sensing views generated by the SFEVC component under a
principled inductive multi-view co-regularized learning frame-
work.

First, we formulate the traffic risk forecasting problem
using data from the sensing views generated by the SFEVC
component as a combined linear mapping problem as follows:

Ŷ c =

V∑
v=1

σvf
v(Xc

v) =

V∑
v=1

σvX
c
vW

c
v +Bc (3)

where Ŷ c is the estimated traffic accident rate in sensing cell
SCc. V is the number of sensing views in IMVCL component
(i.e., V = |{XSD, XOD}| = 2 in this paper). Xc

v is the set of
social sensing data from the vth sensing view at sensing cell
SCc, where Xc

v ∈ {Xc
SD, X

c
OD} (defined in Equation 2). σv

is the weight of the vth sensing view, which is usually set to
be a small value (e.g., 1

V ) for all views if no prior knowledge
is given. fv is the prediction function for the vth sensing view
that takes the sensing data in sensing view Xc

v and outputs the
estimated traffic accident rate Ŷ c for sensing cell SCc, and fv

is a linear mapping function (i.e., fv(Xc
v) = Xc

vW
c
v ). W c

v is
the mapping matrix and Bc is the coefficient matrix.

The key to solve the above problem is to obtain the optimal
values of W c

v and Bc that minimize the difference between
the predicted Ŷ c and the real value Y c for all sensing cells.
To learn the optimal values of W c

v and Bc, we develop a
Co-Regularized learning based framework. In our framework,
we define the objective function of the multi-view learning
scheme as follows:

argmin
Wc

v ,Bc

C∑
c=1

||Y c −
V∑

v=1

σvX
c
vW

c
v −Bc||22 + ω

C∑
c=1

V∑
v=1

||W c
v ||22

+θ

C∑
c=1

V∑
v̂,v=1,v̂ 6=v

||Xc
v̂W

c
v̂ −Xc

vW
c
v ||22

+ε

V∑
v=1

N∑
n=1

∑
c∈Sn

||W c
v −

1

|Sn|
∑
ĉ∈Sn

W ĉ
v ||22

(4)

where Y c is the true traffic accident rate. ||W c
v ||22 is the l2-

regularizer of the mapping matrix W c
v to control the sparsity

of each learned mapping matrix W c
v to avoid the over-fitting of

our forecasting model.
∑C

c=1

∑V
v̂,v=1,v̂ 6=v ||Xc

v̂W
c
v̂ −Xc

vW
c
v ||22

is the co-regularizer to enforce the agreement on the prediction
results made by different sensing views at the same sensing
cell.

∑V
v=1

∑N
n=1

∑
c∈Sn

||W c
v − 1

|Sn|
∑

ĉ∈Sn
W ĉ

v ||22 is the
clustered mean-constrained regularization term to encode the
spatial correlations into our objective function, where N is the

number of sensing cell clusters in the sensing area and Sn is
the set of sensing cells in the cluster n.

The above objective function can be solved using gradient
descent techniques [16] to obtain the solution of the mapping
matrix W and coefficient matrix B. After we obtain the
optimal solutions of W and B, we can apply them to forecast
the traffic accident rate for each cell using the prediction
function in Equation 3.

V. EVALUATION ON REAL WORLD DATA

A. Dataset

In our evaluation, we use Get Old Tweets 4 to collect a
dataset from Twitter about traffic accidents over the time
period from Jan. 1st, 2016 to Jun. 30th, 2018 in New York City
as our social media data. In addtion, we use a public traffic
accident report dataset provided by the New York City Police
Department (NYPD) 5 at the same time-frame as the ground-
truth data to evaluate all compared schemes. We also generate
the open city data from the NYPD traffic accident report
dataset. Different from the ground truth data, we postpone
the available time of the traffic accident reports for a month.

B. Baseline and Metrics

We choose several representative traffic risk forecasting
baselines that are applicable to the social sensing data
paradigm we studied in this paper. In particular, each baseline
consists two parts: i) the data sources it uses for traffic risk
forecasting; ii) the forecasting algorithm it adopts.

Data Sources
• Social-based (S): Social-based schemes predicts the traf-

fic risk of a sensing cell based on the social media data.
• Open-based (O): Open-based schemes forecasts the traf-

fic risk of a sensing cell based on the open city data.
Forecasting Algorithm
• Linear Regression (LR) trains a linear regression model

to minimize the difference between the true and esti-
mated traffic accident rate [17].

• Ridge Regression (Ridge) tries to learn the weight of
the forecasting model by adding a Ridge regularizer to
enforce the robustness of the learned model [18].

• MultipleLayer Perception (MLP) is a well-known deep
neural network framework that models the non-linearity
in traffic accident data to predict traffic accident rate [19].

The combinations of the data sources and forecasting algo-
rithms discussed above comprise the baselines.

In our evaluation, we define the Mean Absolute Error (MAE)
to evaluate the performance of all compared scheme: MAE =
1
C ·

∑C
l=1

1
T ·

∑T
t=1 abs(Y

c
t − Ŷ c

t ), where C is the number of
the sensing cells, and T is number of the forecasting windows.
Y c
t and Ŷ c

t are the true and estimated traffic accident rate for
cell l at forecasting window t.

4https://github.com/Jefferson-Henrique/GetOldTweets-python
5https://data.cityofnewyork.us/Public-Safety/NYPD-Motor-Vehicle-

Collisions/h9gi-nx95
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C. Evaluation Results

In the experiments, we evaluate the performance of all
schemes by selecting different set of sensing cells. We focus
on the sensing cells with more than 100 accidents over the
studied time period, which translates to an average of more
than 1 accident per week. In particular, we select three subsets
of sensing cells by gradually increasing the accident rate of the
sensing cells from above 100 to above 200 over the study’s
time period (we refer to them as A > 100, A > 150, and
A > 200). We set the forecasting window to be one week
by considering the frequency of the accidents in the studied
area. The results are presented in Table I. We observe that the
RiskCast scheme outperforms all of the baselines at locations
with different traffic risks. In terms of the mean absolute error
(MAE), the performance gains achieved by RiskCast compared
to the best-performing baseline with A > 100, A > 150, and
A > 200 are 10.9%, 11.9%, and 4.5% respectively. This is
because the RiskCast accurately forecasts the traffic risk by
judiciously exploring both social media data and open city
data through a principled multi-view co-regularized learning
framework.

Table I
PERFORMANCE COMPARISONS (MAE) ON LOCATIONS WITH DIFFERENT

ACCIDENT RATES

Different Accident Rates

Category Algorithm A > 100 A > 150 A > 200

S-LR 1.176 1.388 1.876
Social-based S-Ridge 1.132 1.327 1.748

S-MLP 1.168 1.302 1.640

O-LR 1.325 1.479 1.733
Open-based O-Ridge 1.303 1.462 1.725

O-MLP 1.423 1.601 2.007

Our Alg RiskCast 1.020 1.163 1.569

VI. CONCLUSION

In this paper, we develop the RiskCast scheme to solve
the traffic risk forecasting problem in intelligent transportation
systems. The RiskCast scheme addresses the limitation of
current solutions that largely depend on accurate sensing
measurements from infrastructure based sensors by exploring
two widely available yet complementary social sensing data
sources: social media data and open city data. In particular,
RiskCast makes accurate traffic risk forecasting in a city by ex-
ploiting the social sensing data under a principled multi-view
co-regularized learning framework. The evaluation results on
the real-world dataset from New York City demonstrate that
the RiskCast scheme achieves significant performance gains
compared to the state-of-the-art baselines and provides oppor-
tunities to improve the safety of the urban traffic systems.
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