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Abstract—This paper presents an unsupervised approach to
accurately discover interesting places in a city from location-
based social sensing applications, a new sensing application
paradigm that collects observations of physical world from
Location-based Social Networks (LBSN). While there are a
large amount of prior works on personalized Point of Interests
(POI) recommendation systems, they used supervised learning
approaches that did not work for users who have little or
no historic (training) data. In this paper, we focused on
an interesting place discovery problem where the goal is
to accurately discover the interesting places in a city that
average people may have strong interests to visit (e.g., parks,
museums, historic sites, etc.) using unsupervised approaches. In
particular, we develop a new Physical-Social-aware Interesting
Place Discovery (PSIPD) scheme which jointly exploits the
location’s physical dependency and the visitor’s social depen-
dency to solve the interesting place discovery problem using an
unsupervised approach. We compare our solution with state-of-
the-art baselines using two real world data traces from LBSN.
The results showed that our approach achieved significant
performance improvements compared to all baselines in terms
of both estimation accuracy and ranking performance.

Keywords-Social Sensing, Interesting Place Discovery, Unsu-
pervised Learning, Physical Dependency, Social Dependency

I. INTRODUCTION

This paper develops an unsupervised approach to accu-
rately discover interesting places in a city from location-
based social sensing applications. This work is motivated
by the emergence of social sensing as a new application
paradigm of collecting sensory measurements from com-
mon individuals with smart sensing devices (e.g., smart-
phones) [11], [12], [29]. This trend becomes more prevalent
with the advent of online social media that allows the crowd
to distribute their measurements in a timely and scalable
way [2], [30], [33], [34]. For example, using Location-
Based Social Network (LBSN) services (e.g., Foursquare,
Google Place, Gowalla, etc.), people can now easily upload
the “check-in” points or GPS traces from their phones to
report the places they visit in a city. Alternatively, a group
of citizens who care about the appearance of their neigh-
borhood may download a geotagging app to take pictures of
litter locations and share them with the community. While
there are a large amount of prior works on personalized
Point of Interests (POI) recommendation systems, they used

supervised learning approaches that did not work for users
who have little or no historic (training) data [9], [16], [18],
[31], [41], [42]. In this paper, we focus on an interesting
place discovery problem in social sensing applications where
the goal is to accurately discover the interesting places in
a city where average people may have strong interests
to visit (e.g., parks, museums, historic sites, etc.) using
unsupervised approaches.

Significant efforts have been made to solve the interesting
place discovery problem using the crowdsourcing meth-
ods [3], [10], [15], [26], [38], [44]. The basic principle of
those solutions is to estimate the locations of interesting
places by analyzing the GPS traces from a large crowd in
a given area (e.g., city) [5]. The crowdsourcing methods
have a few clear advantages compared to the traditional
methods (e.g., travel websites or search services) [28], [32].
First, crowdsorucing is cost efficient since the crowd often
volunteer to share their location data through the services
they use (e.g., LBSN) [20]. Second, the interestingness
of a place may change over time and the crowdsourcing
methods can track such changes by analyzing the most
recent trajectory data uploaded by the crowd [39]. Third, the
crowdsourcing traces normally have a better spatial-temporal
coverage of the interesting places as the crowd are naturally
distributed across the region [26].

However, several key limitations exist in the current
interesting place discovery solutions using crowdsourcing
methods. First, a large category of existing solutions devel-
oped heuristic-based models that assume linear relationship
between the user’s travel experience 1 and the number
of places he/she visited [44]. Such assumption does not
hold in scenarios where the relationship between a user’s
travel experience and the number of places he/she visited is
nonlinear [27]. Second, physical dependency often exists
between places that are close to each other. For example,
users who visit the aquarium in Chicago may also choose to
visit the planetarium a few hundred meters away. However,
they may not upload two separate check-in points at the
two nearby places. The current schemes often ignored such
physical dependency and were shown to generate many

1The travel experience was shown to directly affect the user’s ability to
find interesting places [15]



Figure 1. The Overview of PSIPD Framework

false negatives [10]. Third, the social dependency between
users also affects their visiting behavior and the interesting
place discovery results. Unfortunately, the current techniques
either ignored the impact of user’s social dependency or
consider it using heuristic approaches, which generated a
large number of false positives [26].

In sharp contrast to our previous work in [10], this
paper develops a Physical-Social-aware Interesting Place
Discovery (PSIPD) scheme that addresses the above limita-
tions by explicitly exploiting both the physical dependency
between places and the social dependency between users
using an unsupervised approach. The overview of the
PSIPD framework is shown in Figure 1. In particular, a
maximum likelihood estimation (MLE) approach is devel-
oped to jointly estimate both the user’s travel experience and
the interestingness of a place. The MLE approach considers
both the user’s visiting behavior and the physical-social
dependency information embedded in the crowdsourcing
data under a rigorous analytical framework. We evaluate the
PSIPD scheme using two real world data traces collected
from LBSNs (i.e., Brightkite and Gowalla). The results
showed that our approach achieved significant performance
improvements compared to the sate-of-the-art baselines in
terms of both estimation accuracy and ranking performance.
The results of this paper are important because they allow
crowdsourcing applications to accurately discover interesting
places by explicitly considering the dependency in both
physical and social spaces using a principled unsupervised
approach. To summarize, the contributions of this work are
as follows:

• We propose an unsupervised approach to solve the in-
teresting place discovery problem by jointly exploiting
both the physical dependency between places and the
social dependency between users.

• We develop a new analytical framework that allows us
to derive an optimal solution (in the sense of maximum
likelihood estimation) for the physical-social-aware in-
teresting place discovery problem.

• Our MLE solution explicitly handles the nonlinear

relationship between the user’s travel experience and
the interestingness of places.

• The PSIPD scheme achieves non-trivial performance
gains compared to the state-of-the-art baselines on real
world data traces.

II. RELATED WORK

Advances in location-acquisition on mobile devices and
wireless communication technologies have enabled the
Location-Based Social Networking (LBSN) services [22]–
[24]. Recent research works start to address interesting
challenges in LBSN such as user mobility modeling [4],
[19], [45], semantic analysis [17], [36] and user relationship
study [8], [40]. An emerging problem of interesting place
discovery arises in LBSN due to the proliferation of location-
based crowdsourcing applications (e.g., Foursquare, Google
Places, Gowalla) [1], [5]. These applications empower com-
mon individuals to easily share their location information
(e.g., check-in points) with other people almost anywhere
and anytime. To address this emerging problem, we develop
a physical-social-aware interesting place discovery scheme
to accurately identify interesting places in a city by explicitly
exploiting both the physical dependency between places
and social dependency between users under a rigorous
analytical framework. The proposed framework accurately
discovers the interesting places from massive check-in points
contributed by the crowd.

Significant amount of work has been done in recom-
mending Points of Interests (POI) in data mining and
geographic information systems [9], [16], [18], [41], [42].
For example, Zhang et al. [41] developed a kernel density
estimation method to infer the POI based on the observation
that the geographical proximity significantly affects user
check-in behaviors. They further integrated their model with
social connections between users and category information
of places [42]. Hu et al. [9] proposed a comprehensive
model that explicitly considered the geographical influence
and temporal activity patterns in POI recommendations.
Additionally, Kurashima et al. [16] proposed a geo-topic
model to estimate interested places by learning the user’s
activity area and various features of locations. Lian et al. [18]
studied POI recommendation using a weighted matrix factor-
ization and an augmented latent space model. However, the
above solutions all used supervised learning approaches for
personalized POI recommendation, which did not work for
users who have little or no prior data to train their models. In
contrast, this paper developed an unsupervised approach to
address the interesting place discovery problem that requires
no training data.

In information retrieval and data mining, there exists a
good amount of work on the topic of mining geo-spatial
data traces to discover interesting places for average people.
For example, Zheng et al. [43], [44] proposed a Hyperlink-
Induced Topic Search (HIST) based method to recommend



interesting places for visitors by mining their check-in
patterns. Tiwari et al. [26] used the semantic features of geo-
spatial regions to recommend popular and significant places.
Furthermore, Khetarpaul et al. [15] used relational algebra
operators combined with statistical operators to determine
interesting locations from the aggregated GPS traces of
multiple users. Zhang et al. [40] developed a novel method
to predict links across partially aligned location-based social
networks and address the data sparsity problem in interesting
place finding. However, the above works either assumed
linear correlations between the travel experience of users
and the interestingness of places or ignored the physical-
social dependency between places and users respectively. In
contrast, this paper considers both the nonlinear relationship
scenario and the physical-social dependency in the proposed
model, which is shown to significantly improve the accuracy
of the interesting place discovery results.

III. PROBLEM FORMULATION

In this section, we formulate the physical-social-aware
interesting place discovery problem as a constraint optimiza-
tion problem. In particular, we consider a location-based
crowdsourcing application (e.g., LBSN) where a group of
M users (i.e., U1, U2, ..., UM ) visit a set of N places (i.e.,
P1, P2, .., PN ). For simplicity, we assume the interestingness
of a place to be binary 2. Specifically, Pk = I represents that
place Pk is interesting and Pk = Ī represents that place Pk

is not interesting. We further define the following terms to
be used in our model.
• UP is defined as a M ×N matrix that represents the

visiting behavior of all users U at all places P . It is
referred to as the User-Place Matrix. In UP , UiPk = 1
when user Ui visits place Pk and UiPk = 0 otherwise.

• PD is defined as a set of joint probability distributions
that describe the physical dependency between places
in the system. Suppose we divide all N places into
R independent groups (e.g., based on their geographic
proximity) where places in the same group are corre-
lated and places in different groups are independent. In
particular, for a group r, we have a joint distribution
PDr to represent the dependency between places in
the group. PDr is often known from the application
context or can be learned from the collected data 3.

• SD is defined as a M × M matrix to represent the
social dependency between users. It is referred to as the
Social-Dependency Matrix. In SD, SDi,j = 1 when
user Ui and Uj have a friend relationship and SDi,j =
0 otherwise. In this paper, we consider the bi-directional
friendship between users (e.g., friendship on Facebook
and Foursquare) and SD is a symmetric matrix (i.e.,

2It turns out our solution presented in the next section could also provide
a quantitative metric to evaluate exactly how interesting a place would be.

3In the evaluation, we showed how to obtain the PD from a real world
crowdsourcing application using an open map service.

SDi,j = SDj,i). It is trivial to extend our model to
handle directional friendship as well. Based on SD, we
can divide all users into C independent groups where
users in the same group are dependent and users in
different groups are independent.

We formulate our physical-social-aware interesting place
discovery problem as follows. First, we define several impor-
tant probability terms to be used in the problem formulation:
if a user Ui is independent (i.e., Ui does not have any social
connection with other users), Tei is defined as the Ui’s
independent travel experience, which is the probability that
a place Pk is interesting given that the user visits Pk. If
Ui is dependent (i.e., user Ui has social connections with
other users), we define Tei,j as the user’s dependent travel
experience, which is the probability that a friend of Ui (i.e.,
Uj) visits an interesting place Pk given that Ui has visited
Pk. Formally, Tei and Tei,j are defined as follows:

Tei = Pr(Pk = I|UiPk = 1)

Tei,j = Pr(Pk = I, UjPk = 1|UiPk = 1) (1)

We further define a few relevant conditional probabilities:
if Ui is independent, Ei and Fi are defined as the probability
that Ui visits a place Pk given that Pk is interesting (or not)
respectively. If Ui is dependent, Ei,j and Fi,j are defined as
the probability that user Ui visits a place Pk given that the
place is interesting (or not) and Ui’s friend Uj also visits Pk

respectively. Formally, Ei, Ei,j , Fi and Fi,j are defined as:

Ei = Pr(UiPk = 1|Pk = I)

Ei,j = Pr(UiPk = 1|UjPk = 1, Pk = I)

Fi = Pr(UiPk = 1|Pk = Ī)

Fi,j = Pr(UiPk = 1|UjPk = 1, Pk = Ī) (2)

Observing that users may visit different numbers of
places, we denote the probability that user Ui visits a
place by pi (i.e., pi = Pr(UiPk = 1)) where Pk is a
randomly chozen place. We further denote d as the prior
probability that a randomly chosen place is interesting (i.e.,
d = Pr(Pk = I)). Using the Bayes’ theorem, we can obtain
the relationship between the items defined above:

Ei =
Tei × pi

d
, Fi =

(1− Tei)× pi
(1− d)

Ei,j =
Tei,j × pi
Tej × pj

, Fi,j =
(1− Tei,j)× pi
(1− Tej)× pj

(3)

Using the above definitions, we formally formulate the
physical-social-aware interesting place discovery problem as
a constraint maximum likelihood estimation (MLE) prob-
lem: given the User-Place matrix UP , the joint distribution
of physical dependency between places PD and the Social-
Dependency matrix SD, the objective is to estimate both
the interestingness of each place and the travel experience



of each user without knowing either of them a priori.
Formally, it is given as follows:

∀k, 1 ≤ k ≤ N : Pr(Pk = I|UP,PD, SD)

∀i, 1 ≤ i ≤M : Pr(Pk = I|UiPk = 1) (4)

IV. SOLUTION

In this section, we develop a Physical-Social-aware In-
teresting Place Discovery (PSIPD) scheme to solve the
optimization problem formulated in the previous section.

A. Likelihood Function Formulation

It turns out that our constraint MLE problem lends itself
nicely to an expectation maximization (EM) solution [6].
In particular, given a set of observations, EM can estimate
both the parameters and the hidden variables of a MLE
model, which is most consistent (in MLE sense) with the
observed data. To develop an EM solution, let us first define
a likelihood function L(Θ;X,Z) = p(X,Z|Θ), where X
is the observed data, Θ is a set of estimation parameters
and Z denotes a set of hidden variables. EM computation
contains two iterative steps: E-step and M-step. The E-step
maximizes the likelihood function w.r.t. Z and the M-step
maximizes the likelihood function w.r.t. Θ. Formally, they
are given as:

E-step: Q(Θ|Θ(n)) = EZ|x,Θ(n) [logL(Θ;x, Z)] (5)

M-step: Θ(n+1) = arg max
Θ

Q(Θ|Θ(n)) (6)

In our physical-social-aware interesting place
discovery problem, the observed data include the User-
Place Matrix UP , the joint distribution of physical
dependency between places PD and the Social-
Dependency Matrix SD. The estimation parameter Θ =
(E1, ..., EM ;F1, ..., FM ;E1,j , ..., EM,j ;F1,j , ..., FM,j ; d),
where Ei, Fi, Ei,j , Fi,j and d are defined in Equation (2).
Furthermore, we define a vector of latent variables Z to
indicate the interestingness of places. Specifically, we have
a corresponding variable zk for each place Pk (i.e., zk = 1
if Pk = I and zk = 0 otherwise). Hence, the likelihood
function of the physical-social-aware interesting place
finding problem can be written as:

L(Θ;X,Z) = Pr(X,Z|Θ)

=
∏
r∈R

Pr(Xr, Zr|Θ) =
∏
r∈R

Pr(Zr)× Pr(Xr|Zr,Θ)

=
∏
r∈R

{ ∑
r1,...,rh∈Ψr

Pr(zr1 , ..., zrh)
∏
k∈r

∏
g∈C

∏
i∈g

ηk,g,i

}
(7)

where ηk,g,i is defined in Table I and Pr(zr1 , ..., zrh) rep-
resents the joint probability distribution of places in an
independent group r. We let Ψr represent all possible
combinations of r1,...,rh in the group (e.g., for a group of

two places, Ψr = [(0, 0), (0, 1), (1, 0), (1, 1)]). |g| denotes
the size of a user independent group g. Figure 2 illustrates
the key parameters and E and M steps of the PSIPD scheme.

Ei Ei, j

Fi Fi, j

Tei

Tei, j

U

UiPk

SiDj

PDr

P

zk

d

Zr

E − Step

M − Step
UPi

Figure 2. The E and M Steps of PSIPD Scheme

Table I
NOTATION FOR PSIPD

ηk,g,i Constrains

Ei |g| == 1, UiPk = 1, zk = I
1− Ei |g| == 1, UiPk = 0, zk = I∏

j∈g Ei,j |g| > 1, UiPk = 1, UjPk = 1, SiDj = 1, zk = I∏
j∈g 1− Ei,j |g| > 1, UiPk = 0, UjPk = 1, SiDj = 1, zk = I

Fi |g| == 1, UiPk = 1, zk = Ī
1− Fi |g| == 1, UiPk = 0, zk = Ī∏

j∈g Fi,j |g| > 1, UiPk = 1, UjPk = 1, SiDj = 1, zk = Ī∏
j∈g 1− Fi,j |g| > 1, UiPk = 0, UjPk = 1, SiDj = 1, zk = Ī

B. PSIPD Scheme

Given the above likelihood function of our problem, we
can derive the corresponding E-step and M-step of the
PSIPD scheme. First, we derive the Q function for the E-step
based on Equation (5):

Q(Θ|Θ(n)) = EZ|X,Θ(n) [logL(Θ;X,Z)]

=
∑
r∈R

Pr(zr1 , ..., zrh |Xr,Θ
(n))

×

{∑
k∈r

∑
g∈C

∑
i∈g

log(ηi,k,g) + logPr(zr1 , ..., zrh)

}
(8)

where Pr(zr1 , ..., zrh |Xr,Θ
(n)) is the conditional joint prob-

ability of all places in the independent group r (i.e.,
r1,...,rh). Given the observed data regarding these places
Xr and the current estimates of the parameters Θ(n),
Pr(zr1 , ..., zrh |Xr,Θ

(n)) can be computed as:

Pr(zr1 , ..., zrh |Xr,Θ
(n))

=
Pr(zr1 , ..., zrh ;Xr,Θ

(n))

Pr(Xr,Θ(n))
(9)



where Pr(zr1 , ..., zrh ;Xr,Θ
(n)) and Pr(Xr,Θ

(n)) can be
further expressed as follows:

Pr(zr1 , ..., zrh ;Xr,Θ
(n))

= Pr(Xr,Θ
(n)|zr1 , ..., zrh)× Pr(zr1 , ..., zrh)

=
∏
k∈r

∏
g∈C

∏
i∈g

ηk,g,i × Pr(zr1 , ..., zrh)

Pr(Xr,Θ
(n))

=
∑

r1,...,rh∈Ψr

[
Pr(Xr,Θ

(n)|zr1 , ..., zrh)× Pr(zr1 , ..., zrh)

]

=
∑

r1,...,rh∈Ψr

[
(
∏
k∈r

∏
g∈C

∏
i∈g

ηk,g,i)× Pr(zr1 , ..., zrh)

]
(10)

For simplicity, we further denote Pr(zk = I|Xk,Θ
(n))

as Y (n, k). It is the probability that place Pk is interesting
given the observed data and the current estimation param-
eters. Y (n, k) can be computed as marginal distribution of
the joint probability of all places in the independent group
r to which place Pk belongs (i.e., Pr(zr1 , ..., zrh |Xr,Θ

(n)),
k ∈ r).

For the M-step, in order to get the optimal Θ∗ that max-
imizes Q function, we set partial derivatives of Q(Θ|Θ(n))
given by Equation (8) with respect to Θ to 0. In particular,
we get the solutions of ∂Q

∂Ei
= 0, ∂Q

∂Fi
= 0, ∂Q

∂Ei,j
= 0,

∂Q
∂Fi,j

= 0, ∂Q
∂d = 0 in each iteration, we can get expressions

of the optimal E∗i , F ∗i , E∗i,j , F ∗i,j and d∗:

E
(n+1)
i = E∗i =

∑
k∈UPi

Y (n, k)∑N
k=1 Y (n, k)

F
(n+1)
i = F ∗i =

∑
k∈UPi

(1− Y (n, k))∑N
k=1(1− Y (n, k))

E
(n+1)
i,j = E∗i,j =

∑
k∈UPi,j

Y (n, k)∑
k∈UPj

Y (n, k)

F
(n+1)
i,j = F ∗i,j =

∑
k∈UPi,j

(1− Y (n, k))∑
k∈UPj

(1− Y (n, k))

d(n+1) = d∗ =

∑N
k=1 Y (n, k)

N
(11)

where UPi is the set of places user Ui visits and UPi,j is
the set of places both user Ui and Uj visit.

V. EVALUATION

In this section, we evaluate the performance of the PSIPD
scheme and compare it with the state-of-the-art baselines on
two real world data traces. To better understand the effects
of exploiting physical and social dependency on the final
results, we consider three variants of the PSIPD scheme
in our evaluation: (i) PSIPD-P: a simplified version of
PSIPD that only considers the physical dependency between
places; (ii) PSIPD-S: a simplified version of PSIPD that

only considers the social dependency between users; (iii)
PSIPD-PS: the full version of PSIPD that considers both
physical and social dependency.

In the rest of this section, we first describe the experimen-
tal setups and data pre-processing steps. Then we introduce
the state-of-the-art baselines and evaluation metrics used in
the experiments. Finally, we present the evaluation results
and demonstrate the performance improvements achieved by
our proposed scheme.

A. Experiment Settings

1) Data Trace Statistics: we use two real world data
traces to evaluate our proposed schemes. These traces
are collected from location-based social network services,
namely, Brightkite4 and Gowalla5 [5]. In these location-
based social network services, users share their location
information (i.e., check-in records) at different places. Each
check-in record is formatted as: (user ID, latitude, longitude,
timestamp). The Brightkite trace was collected from April
2008 to October 2010 and the Gowalla trace was collected
from February 2009 to October 2010. Additionally, the
social dependency information is specified as bi-directional
friendship in the traces. Other statistics of the traces are
presented in Table II.

Table II
TRACE STATISTICS

Description Brightkite Gowalla

Number of Users 58,228 107,092
Number of Friendships 214,078 950,327
Number of Check-ins 4,491,143 6,442,890

2) Data Pre-Processing: To evaluate our methods in
real-world settings, we conducted the following data pre-
processing steps: (i) clustering all raw geographical check-
in points into meaningful clusters that represent places in
the physical world; (ii) identifying independent groups of
places based on their physical locations; (iii) identifying in-
dependent groups of users based on their social connections.
The goal of the above pre-processing steps is to generate the
inputs to the PSIPD scheme: the User-Place Matrix UP , the
joint probability distributions of place dependency PD, and
the Social-Dependency Matrix SD we defined in the Model
Section.

In our real-world evaluation, we select San Francisco
as our target city. Figure 3 shows the check-in points of
two data traces in San Francisco 6. We also plotted the
distributions of the check-in points per user in Figure 4.
The figure suggest power-law-like distributions on both data

4http://snap.stanford.edu/data/loc-brightkite.html
5http://snap.stanford.edu/data/loc-gowalla.html
6We did plot duplicate check-in points (i.e., check-in points from the

same user at the same location)



traces which are consistent with typical observations in
social networks [14].

(a) Brightkite Trace (b) Gowalla Trace
Figure 3. Maps of San Francisco Check-in Points

(a) Brightkite Trace (b) Gowalla Trace
Figure 4. Distribution of Check-in Points Per User

Clustering: we applied the K-means clustering algo-
rithm [25] to first cluster the raw check-in records (with
duplicated ones removed) into intermediate clusters without
any semantic meanings (i.e., the clustering process only
considered the physical distance between locations). We then
re-organized the intermediate clusters into meaningful places
using the City Point-of-Interest service from Google Map 7.
As a result, we found 53 places in total for the Brightkite
trace, of which 24 places are interesting and 29 places are
not interesting. For the Gowalla trace, we found 56 places
in total, of which 25 places are interesting and 31 places are
not interesting. After the clustering step, we generate the
User-Place Matrix UP by associating each user with the
places the user visited.

Identifying Physical Independent Groups: we manually
examined the places returned by the previous clustering
step and organized them into physical independent groups.
Places within the same independent group are so close to
each other that users are more likely to visit them together
(however, users may not check in at each individual place.).
In particular, we identified 26 independent groups in the
Brightkite trace and 29 in the Gowalla trace. Furthermore,
we empirically estimate the joint probability distribution
of places in the same independent group based on their
locations and historical visiting records [5]. After this step,
we generate the set of joint probability distributions PD.

Identifying Social Independent Groups: we used
SPLA [37] (a community detection algorithm) to identify
independent groups of users. We first obtain the social

7https://www.google.com/maps

connections between users from the friendship information
included in the trace. In particular, we generated the social
dependency graph as an undirected graph G = (V,E) where
V and E represents the set of users and their friendship
respectively: if user u is a friend of user v in the trace, we
have a link between u and v. We then applied the SPLA
algorithm on the graph G to partition the whole set of
users into different independent groups. The users in the
same independent group form a clique in graph G. Using
the output of this step, we generate the Social-Dependency
Matrix SD.

B. Baselines and Evaluation Metrics

1) Baselines: In the evaluation, we compare the perfor-
mance of our new schemes (i.e., PSIPD-P, PSIPD-S and
PSIPD-PS) with the following state-of-the-art baselines from
current literature. The first (and simplest) baseline is Voting,
which computes the interestingness of a place by counting
the number of times the place is visited. The second baseline
is the HITS [44], which assumes linear relationship between
the user’s travel experience and the interestingness of a
place. The third baseline is Regular-EM which is shown
to outperform four state-of-the-art techniques in identifying
interesting entities from noisy crowdsourcing data [35]. Note
that the above baselines all assume that both places and
users are independent. Additionally, we also compare the
performance of PSIPD with four recent baselines from Point-
of-Interest recommendation literature: the first baseline is
called iGSLR [41], which explored the geographical prox-
imity influence on users’ check-in behaviors in comput-
ing the interestingness of a place. The second baseline
is GeoSoCa [42], which explored geographical, social and
category information for Point-of-Interest recommendations.
The third baseline is STT [9], which captured the spatial
and temporal aspects of check-ins to recommend locations.
The fourth baseline is GTM [16], which developed a geo-
topic model to incorporate the user’s activity area into the
estimation process of interesting places.

2) Evaluation Metric: In the experiments, we use two
sets of evaluation metrics. The first set of metrics are used
to evaluate the accuracy of different techniques in terms of
discovering interesting places. These metrics are: precision,
recall, F1-measure [21] and receiver operating characteris-
tics (ROC) curves [7]. The second set of metrics are used
to evaluate the ranking performance of different schemes. 8

These metrics are normalized discounted cumulative gains
(NDCG) [13]. NDCG is an indicator of the average rank-
ing performance of all compared schemes. Given a query,
NDCG at position n is calculated as:

NDCG(n) = Nr(n)×
n∑

l=1

2r(l) − 1

log(1 + l)
(12)

8To evaluate the ranking performance, we ranked all places using the
estimated interestingness scores of places returned by different schemes.
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Figure 5. Estimation Accuracy on Brightkite Trace
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Figure 6. Estimation Accuracy on Gowalla Trace
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Figure 7. ROC Curves on Brightkite Trace

False Positive Rate
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ru

e
 P

o
s
it

iv
e
 R

a
te

0

0.2

0.4

0.6

0.8

1

PSIPD-PS
PSIPD-P
PSIPD-S
GeoSaCa
iGSLR
STT
GTM
Regular-EM
HITS
Voting

Figure 8. ROC Curves on Gowalla Trace

where r(l) indicates the score for rank l. In our case, r(l)
is equal to 1 if the l-th place is interesting and r(l) = 0
otherwise. Nr(n) is a normalization factor that guarantees
the NDCG of the perfect ranking scheme is equal to 1.

C. Evaluation Results

In this section, we conducted experiments on two real-
world data traces to compare the performance of PSIPD-
P, PSIPD-S and PSIPD-PS schemes with 7 state-of-the-art
baselines (i.e., GeoSoCa, iGSLR, STT, GTM, Regular-EM,
Sums-Hubs and Voting) in terms of estimation accuracy and
ranking performance. Independently from two data traces
we used in evaluation, we collected ground truth values (i.e.
whether a place is interesting or not) from three widely used
travel recommendation websites: TripAdvisor, Planet Aware
and San Francisco Travel. We then decide whether a place
is interesting using the following rubric:

• Interesting places: Places that have been recommended
by at least two of these travel recommendation web-
sites.

• Unconfirmed places: Places that do not satisfy the
requirement of interesting places.

Note that “unconfirmed places” may include both places
that are not interesting or potentially interesting places that
cannot be independently verified by using the above rubric.
Hence, our evaluation results present pessimistic bounds on
the performance.

1) Estimation Performance: We first conduct experiments
to evaluate the estimation performance of all schemes in
terms of precision, recall and F1-measure. The results on
Brightkite trace are shown in Figure 5. We observe that
all our proposed schemes (i.e., PSIPD-P, PSIPD-S and
PSPID-PS) outperform all the compared baselines in terms
of precision, recall and F1-measure. We also observe that
PSPID-PS performs the best among all schemes compared.
The largest performance gain achieved by PSIPD-PS on
precision over the best performed baseline (GeoSoCa) is
33%. The largest performance gain achieved by PSIPD-PS
on recall is 21%. The results on Gowalla trace are shown
in Figure 6. We observe similar results: all our proposed
schemes continue to outperform the baselines and the largest
performance gain achieved by PSIPD-PS on precision and
recall (compared to the best performed baseline) is 23% and
20% respectively.

We also drew the ROC curves of all compared schemes on
the two data traces in Figure 7 and Figure 8 respectively. We
observe that PSIPD schemes (i.e., PSIPD-P, PSIPD-S and
PSIPD-PS) perform better than the baselines while PSIPD-
PS achieves the best performance at different true positive
and false positive rates. This performance improvement of
PSIPD-PS is achieved by explicitly exploiting both physical
dependency between places and social dependency between
users under a rigorous analytical framework.

2) Ranking Performance: We also evaluate the ranking
performance of all schemes and use the NDCG@n [13]
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Figure 9. NDCG@n Evaluation on Brightkite Trace
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Figure 10. NDCG@n Evaluation on Gowalla Trace

metrics we introduced earlier. In Figure 9 and Figure 10, we
compare the performance of the PSIPD schemes to all base-
lines in terms of NDCG@n on two data traces respectively.
We observe PSIPD schemes continue to outperform the
baselines at different values of n. Also, PSIPD-PS achieves
the perfect NDCG score when n ≤ 15.

VI. CONCLUSION

This paper develops an unsupervised social-physical-
aware approach to solve the interesting place discovery
problem using location-based social network data feeds. The
proposed PSIPD scheme explicitly exploits both the physical
dependency between places and social dependency between
users under a maximum likelihood estimation framework.
We evaluated the performance of the PSIPD scheme on two
real world data traces collected from LBSN and our results
showed that the PSIPD scheme significantly outperformed
the state-of-the-art baselines in terms of both estimation
accuracy and ranking performance. The result of the paper
is important because it allows crowdsourcing applications to
systematically investigate the physical-social dependency in
the interesting place discovery problem using a principled
approach.

ACKNOWLEDGMENTS

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. CNS-1566465
and IIS-1447795.

REFERENCES

[1] T. Abdelzaher and D. Wang. Analytic challenges in social
sensing. In The Art of Wireless Sensor Networks, pages 609–
638. Springer, 2014.

[2] C. C. Aggarwal and T. Abdelzaher. Social sensing. In
Managing and Mining Sensor Data, pages 237–297. Springer,
2013.

[3] M. T. Al Amin, T. Abdelzaher, D. Wang, and B. Szymanski.
Crowd-sensing with polarized sources. In Distributed Com-
puting in Sensor Systems (DCOSS), 2014 IEEE International
Conference on, pages 67–74. IEEE, 2014.

[4] Z. Cheng, J. Caverlee, K. Lee, and D. Z. Sui. Exploring
millions of footprints in location sharing services. ICWSM,
2011:81–88, 2011.

[5] E. Cho, S. A. Myers, and J. Leskovec. Friendship and
mobility: user movement in location-based social networks.
In Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages
1082–1090. ACM, 2011.

[6] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum
likelihood from incomplete data via the em algorithm. JOUR-
NAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B,
39(1):1–38, 1977.

[7] T. Fawcett. An introduction to ROC analysis. Pattern
Recognition Letters, 27:861–874, 2006.

[8] H. Gao, J. Tang, X. Hu, and H. Liu. Modeling temporal
effects of human mobile behavior on location-based social
networks. In Proceedings of the 22nd ACM international
conference on Conference on information & knowledge man-
agement, pages 1673–1678. ACM, 2013.

[9] B. Hu, M. Jamali, and M. Ester. Spatio-temporal topic
modeling in mobile social media for location recommenda-
tion. In Data Mining (ICDM), 2013 IEEE 13th International
Conference on, pages 1073–1078. IEEE, 2013.

[10] C. Huang and D. Wang. On interesting place finding in
social sensing: An emerging smart city application paradigm.
In 2015 IEEE International Conference on Smart City 2015
(SmartCity 2015). IEEE, 2015.

[11] C. Huang and D. Wang. Spatial-temporal aware truth
finding in big data social sensing applications. In Trust-
com/BigDataSE/ISPA, 2015 IEEE, volume 2, pages 72–79.
IEEE, 2015.

[12] C. Huang, D. Wang, and N. Chawla. Towards time-sensitive
truth discovery in social sensing applications. In Mobile Ad
Hoc and Sensor Systems (MASS), 2015 IEEE 12th Interna-
tional Conference on, pages 154–162. IEEE, 2015.

[13] K. Järvelin and J. Kekäläinen. Cumulated gain-based eval-
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