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Abstract—This paper develops a new principled framework
to solve a hardness-aware truth discovery problem in social
sensing applications. Social sensing has emerged as a new appli-
cation paradigm where a large crowd of social sensors (humans
or devices on their behalf) are recruited to or voluntarily report
observations about the physical environment at scale. These
observations may be either true or false, and hence are viewed
as binary claims. A fundamental problem in social sensing
applications lies in ascertaining the correctness of claims and
the reliability of data sources. We refer to this problem as
truth discovery. Significant efforts were made to address the
truth discovery problem, but an important dimension of the
problem has not been fully exploited: hardness of claims (how
challenging a claim is to be made). A common assumption
made in the previous work is that they assumed all claims are
of the same degree of hardness. However, in real world social
sensing applications, simply ignoring the hardness differences
between claims could easily lead to suboptimal truth discovery
results. In this paper, we develop a new hardness-aware truth
discovery scheme that explicitly considers different hardness
degrees of claims into a rigorous analytical framework. The new
truth discovery scheme solves a maximum likelihood estimation
problem to determine both the claim correctness and the source
reliability. We compare our hardness-aware scheme with the
state-of-the-art baselines through three real world case studies
(Baltimore Riots, Paris Attack and Oregon Shootings, all in
2015) using Twitter data feeds. The evaluation results showed
that our new scheme outperforms all compared baselines and
significantly improves the truth discovery accuracy in social
sensing applications.
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I. INTRODUCTION

This paper develops a new principled framework to
solve a hardness-aware truth discovery problem in social
sensing applications. Social sensing has emerged as a new
application paradigm where a large crowd of social sen-
sors (humans or devices on their behalf) are recruited
to or voluntarily report observations about the physical
environment at scale [2], [29]. These observations may
be either true or false, and hence are viewed as binary
claims. Examples of social sensing applications include
crowdsensing/crowdsourcing tasks using different sensors in
smartphones [6], obtaining real-time situation awareness for
disaster response and crisis management using online social
media [40], geo-tagging applications for smart cities using
data contributed by common citizens [17]. This paradigm

has a few clear advantages over the traditional infrastructure-
based sensor networks: (i) social sensing is infrastructure
free and it is inexpensive to deploy applications at a large
scale; (ii) social sensors are more versatile than physical
sensors and they can report a broad category of phenomena
(e.g., disasters, traffic congestion, power outage, riots, etc);
(iii) social sensing normally has a better coverage than
traditional sensing paradigm as social sensors are mobile
and naturally scattered around the world. However, the data
collection in social sensing is usually open to all and it is
impossible to screen all participants (data sources) before-
hand. Therefore, a fundamental problem in social sensing
applications lies in accurately ascertaining the correctness
of claims and the reliability of data sources. We refer to this
problem as truth discovery.

Significant progress has been made to address the truth
discovery problem in social sensing from the sensor net-
work [28], [33]-[35], information fusion [14], [27] and data
mining [42], [45] communities. A common assumption made
in the previous work is: the claims are assumed to be of the
same degree of hardness (i.e., it is equally challenging for a
source to report all of its claims). However, such assumption
may not hold in real world social sensing applications, where
claims could have different degrees of hardness depending
on various factors of the event associated with the claim
such as abnormality, time, location, and scale. For example,
Table I shows claims reported to Twitter in the aftermath
of the Oregon Umpqua Community College Shooting event
in October 2015. The first two claims are regarded as hard
claims as they requires people to be physically at the prime
locations of the events and explicitly report concrete and
informative observations. The latter two claims are regarded
as easy claims as they are in the form of personal sentiments
and repeated information (i.e., Retweets) that can be made
by anyone anywhere.

Important challenges exist when we develop a hardness-
aware solution to improve the truth discovery accuracy in
social sensing. First, social sensing is designed as an open
data collection paradigm where the reliability of sources and
the correctness/hardness degree of claims are often unknown
a priori. Second, it is very challenging to find an effective
method to automatically and accurately identify the hardness
degrees of all claims considering the rich and unstructured
data reported by human sensors in social sensing, especially



Tweet Hardness Degree
“There’s a shooter! Run! Run! Get out of there!” | Hard

—#Oregon students during #OregonShooting. Our
latest:#UCCShooting

The shooter in a massacre at Umpqua Community | Hard
College in Oregon has been identified.

My heart goes out to all those who lost loved ones | Easy
today.

RT @BanCollectivism: And yet these shooting don’t | Easy
happen much in “progressive” countries, you idiot.

Table 1
CLAIMS OF DIFFERENT HARDNESS DEGREES IN OREGON UMPQUA
COMMUNITY COLLEGE SHOOTING EVENT (2015)

with no prior knowledge of a particular event. Third, sources
may have different reliability in reporting claims of different
degrees of hardness and such difference cannot be directly
identified from the social sensing data.

To address the above challenges, we develop a hardness-
aware truth discovery scheme that explicitly incorporates
different hardness degrees of claims into a maximum likeli-
hood estimation framework. In particular, a Hardness-Aware
Expectation Maximization (HA-EM) algorithm is developed
to assign true values to claims and reliability to sources
more accurately by exploiting the hardness degree of claims.
We evaluate our HA-EM scheme through three real world
case studies (Baltimore Riots, Paris Attack and Oregon
Shootings, all in 2015) based on Twitter data feeds. The
evaluation results show that our new scheme outperforms
the state-of-the-art baselines and significantly improves the
truth discovery accuracy. The results of this paper are
important because they allow social sensing applications
to accurately estimate the correctness of claims and the
reliability of sources by explicitly incorporating hardness
degree of claims into a principled framework. To summarize,
our contributions are as follows:

o To the best of our knowledge, this study is the first to
explicitly consider the hardness degree of claims in
the truth discovery problem of social sensing using a
principled approach.

o We develop an analytical framework that allows us to
derive an optimal solution (in the sense of maximum
likelihood estimation) for the hardness-aware truth dis-
covery problem.

o We show non-trivial performance gains achieved by our
hardness-aware truth discovery scheme through three
real world case studies in social sensing applications.

The rest of this paper is organized as follows: we discuss
the related work in Section II. In Section III, we present the
new hardness-aware truth discovery model for social sensing
applications. The proposed maximum likelihood estimation
framework and the expectation maximization solution is
presented in Section I'V. Evaluation results are presented in
Section V. We discuss the limitations and future work in
Section VI. Finally, we conclude the paper in Section VIL.

II. RELATED WORK

Social sensing has emerged as a new act of collecting
sensory measurements about the physical world from human
sources or devices on their behalf [2]. Some early applica-
tions include CenWits [12], CabSense [24], and BikeNet [8].
More recent applications in social sensing start to address
challenges such as preserving privacy of participants [5],
reducing information collision [36], [37], improving energy
efficiency of sensing devices [18] and building general mod-
els in sparse and multi-dimensional social sensing spaces [3].
An emerging and critical question about data reliability
arises when the data in social sensing applications are
collected by humans whose “reliability” is not known [1].
Some truth discovery techniques have been developed to
address this problem but they did not fully exploit the
hardness dimension of the problem in their solutions [10],
[11], [34], [35]. In this paper, we develop a hardness-aware
truth discovery scheme that explicitly exploits the claim
hardness in social sensing and significantly improves the
truth discovery accuracy.

In data mining and machine learning literature, there
exists a good amount of work on the topics of fact-
finding that jointly compute the source reliability and claim
credibility [9]. Hubs and Authorities [15] established a
basic fact-finding model based on linear assumptions to
compute scores for sources and claims they asserted. Yin et
al. introduced TruthFinder as an unsupervised fact-finder for
trust analysis on a providers-facts network [41]. Other fact-
finders enhanced these basic frameworks by incorporating
analysis on properties or dependencies within claims and
sources [23], [27]. More recently, new fact-finding algo-
rithms have been designed to address the background knowl-
edge [20], multi-valued facts [44], and multi-dimensional
aspects of the problem [43]. In this paper, we use the insights
from the above work and develop a new estimation scheme
to solve the hardness-aware truth discovery problem in social
sensing applications.

Maximum likelihood estimation (MLE) technique has
been widely used in sensor network community to solve esti-
mation and information fusion problems [16], [21], [39]. For
example, Wang et al. proposed a MLE based target tracking
approach to solve the instability problem and offer supe-
rior tracking performance in wireless sensor networks [39].
Pereira et al. presented a maximum likelihood estimation
algorithm to solve a distributed parameter estimation prob-
lem in unreliable sensor networks [21]. Leng et al. built a
maximum likelihood estimator to jointly estimate the clock
offset, clock skew and fixed delay in sensor networks [16].
However, the estimation variables in the above work are
mostly continuous and the sensors are physical sensors. In
contrast, we focus on estimating a set of binary variables
that represent either true or false statements from human
sensors. The MLE problem we studied is actually more



challenging due to the discrete nature of the estimated vari-
ables and the non-trivial complexity of modeling humans
as sensors in social sensing.

Finally, our work is also related with a type of information
filtering system called recommendation systems [13]. Expec-
tation Maximization (EM) has been used as an optimization
approach for both collaborative filtering [26] and content
based recommendation systems [22]. For example, Wang et
al. developed a collaborative filtering based system using
the EM approach to recommend scientific articles to users
of an online community [26]. Pomerantz et al. proposed a
content-based system using EM to explore the contextual
information to recommend movies [22]. However, the truth
discovery in social sensing studies a different problem. Our
goal is to estimate the correctness of observations from a
large crowd of unvetted sources with unknown reliability
and various degrees of claim hardness rather than predict
users’ ratings or preferences of an item. Moreover, recom-
mendation systems commonly assume a reasonable amount
of good data is available to train their models while little
is known about the data quality and the source reliability a
priori in social sensing applications.

III. HARDNESS-AWARE TRUTH DISCOVERY PROBLEM
IN SOCIAL SENSING

In this section, we formulate the hardness-aware truth dis-
covery problem in social sensing as a maximum likelihood
estimation problem. We borrowed a social sensing model
introduced in [35]. In particular, consider a scenario where
a group of M sources, namely, S1, 59, ..., Spr, who report
a set of IV observations about the physical environment,
namely, C1,C5, ..., Cn. Those observations may be true or
false, and hence are viewed as binary claims. For example,
in an application that reports the litter locations on city
streets, each location may be associated with a claim that is
true if the litter is present and false otherwise. We assume,
without loss of generality, that the default state of each
claim is negative (e.g., no litter on city streets). Hence,
sources only report when the positive state of the claim
is encountered. Let S; represent the i'" source and C;
represent the j'* claim. C; = 1 if it is true and C; =
otherwise. We define a Sensing Matrix SC, where S;C; =1
when source S; reports that claim Cj is true, and S;C; =0
otherwise.

Furthermore, we need to incorporate the hardness degree
of claims into our model. To capture the claim hardness, we
define a Hardness Vector H, where the element h; represents
the hardness degree of claim C;. Specifically, h; is a discrete
variable with K different values representing K different
degrees of claim hardness (e.g., easy, medium, hard).

We formulate the hardness-aware truth discovery problem
in social sensing as follows. First, let us define a few
important terms that will be used in the problem formulation.
We denote the reliability of source S; by r;, which is

Table II
THE SUMMARY OF NOTATIONS

Description Notation
Set of Sources S
Set of Claims C
Sensing Matrix SC
Hardness Vector H

Report Probability =Pr(S;C; =1,h; = k)
Source Reliability P (C =1,h; =k|S:C; =1)
Correctness Probability =Pr (S C; = 1|C =1,h; =k)
Error Probability =Pr

the probability that a claim is correct given that source .S,
reported it. Formally, r; is given by:

Considering the claims may have different degrees of
hardness, we define ¥ as the reliability of .S; when it reports
a claim with a hardness degree of k, where £k = 1,..., K.
Formally, tf s given by:

r¥ =Pr(C; = 1,h; = k|S;C; = 1) 2)
Hence,
K Sk
k i
= Ex 2L k=1,...K 3
T kZ:er X 5 3)

where s¥ is the probability that S; reports C; with a hardness
degree of k. Formally, s¥ = Pr(S;C; = 1,h; = k). Note
that the probability that S; reports a claim is: s; = Elesf.

Let us further define T to be the (unknown) probability
that S; reports C; (of hardness degree k), given that the
claim is indeed true. Similarly, let Fk denote the (unknown)
probability that S; reports C; (of hardness degree k), given
that the claim is false. Formally, TF and FF are defined as
follows:

TF =Pr(S;0; = 1|Cj = 1,hj = k)
Ff =Pr(S,C; = 1|Cj = 0,h; = k) 4)

Using the Bayes theorem, we can establish the relation-
ship between T}, FF and ¥, s¥ as follows:

Tk_rfxsf
[ dk;
1—17F) x ¥
Fk:( [ 7 5
! (1 —dg) )

where dj; is the prior probability that a randomly chosen
claim with a hardness degree of % is true (i.e., d = Pr(C; =
1,h; = k)). The introduced notations are summarized in
Table II.



Therefore, the hardness-aware truth discovery problem
studied in this paper can be formulated as a maximum
likelihood estimation (MLE) problem: given the Sensing
Matrix SC' and Hardness Vector H, we aim at estimating
the likelihood of the correctness of each claim and reliability
of each source. Formally, we compute:

Vj,1<j < N:Pr(C; =1|SC, H)
Vi, 1 S ) S M PI‘(Cj = 1‘51‘0]‘ = 1) (6)

IV. A HARDNESS-AWARE MAXIMUM LIKELTHOOD
ESTIMATION APPROACH

In this section, we solve the hardness-aware truth dis-
covery problem formulated in Section III by developing a
Hardness-Aware Expectation-Maximization (HA-EM) algo-
rithm.

A. Building The Likelihood Function

EM is an optimization scheme that is commonly used to
solve the MLE problem where unobserved latent variables
exist in the model [7]. Specifically, it iterates between two
key steps: expectation step (E-Step) and maximization step
(M-step). In E-step, it computes the expectation of the log-
likelihood function based on the current estimates of the
model parameters. In M-step, it computes the new estimates
of the model parameters that maximize the expected log-
likelihood function in E-step. The two steps of EM are
shown as follows:

E-step: Q(0]60™)) = Ey), oo [logL(6;2,Z)] (7
M-step: 0"+ = arg max Q(0]6™) 8)

where L(0; X, Z) = Pr(X, Z|0) is the likelihood function, 6
is the estimation parameter of the model, X is the observed
data and Z is a set of latent variables.

Now let us consider how to solve the MLE problem we
formulated in the previous section by developing a hardness-
aware EM scheme. First, we need to define the likelihood
function of the MLE problem. In particular, the observed
data X in our problem is the Sensing Matrix SC and
the Hardness Vector H. The estimation parameter vector is
defined as 0 = (TF, T, ..., Tk FF, F¥, ..., F¥,;; di) where
k =1,..,K and TF, FF and d, are defined in Equation
(4) and (5). Furthermore, we need to define a vector of
latent variables Z to indicate whether a claim is true or
false. More specially, we have a corresponding variable z;‘
for claim C (Whose hardness degree is k) such that ZJ' =1
if C; is true and z = 0 otherwise. Additionally, we define
a set of binary indication variables h% such that h% = 1 if
h; = k in Hardness Vector H and hk =0 0therw1se Hence,
the likelihood function of hardness aware truth discovery

problem can be written given as:
(9' X,7)

K r M

i i

k=1 -i=1

= Pr(X, Z|9)

x (1— Tik)u—sic ) && R X dj X Zﬂ

L

T[T ;
+ |: FkSC &&h

=1
X (1 — FF)A=5i00) && 05 o (1 dy) x (1 - zf)} }

©))

where S;C; = 1 when source S; reports C}; to be true and 0
otherwise. The “&&” represents the “AND” logic for binary
variables. The likelihood function represents the likelihood
of the observed data (i.e., SC' and H) and the values of
hidden variables (i.e., Z) given the estimation parameters
(i.e., 0).
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Figure 1. The E and M steps of HA-EM Scheme

We can then derive the E and M steps of HA-EM scheme
using EM algorithm based on Equation (8). The E and M
steps of HA-EM are shown in Figure 1. The final solutions
of the estimation parameters are:

k = k n
ooy — SaescrPrier = U, 00)
E.]EC"“PI'(Z;C = 1|Xk n))
(FF)(t+D) — Yjescr(1 - Pr( =1|xF,0 (m)))
Z - Ljecr(1 —Pr(zf = 1\Xk 6(m))
YicenPr(zt = 1|X4 f(m)
(D) — ZIEC ¥ 5 0
“ |C*| (10)

where SC’Z-’c is the set of claims (with hardness degree k) that
source S; reports. We also define C* as the set of claims
whose hardness degree is k.



Algorithm 1 Hardness-Aware EM Algorithm

Input: Sensing Matrix SC, Hardness Vector H
Output: Estimations of  Source Reliability and
Correctness

1: Initialize @ (T} = s¥, F¥ = 0.5 x s¥, d' =Random number in (0, 1))
2:n=0

Claim

3: repeat

4: n=n+1

5:  for Each k € {1,2,..., K} do

6: for Each j € C do

7: compute Pr(zg“ = 1\X§“,0<”))

8: end for

9: for Each ¢ € S do

10: compute (TF)(™), (FF)(™) | (dy,) ™)
11: end for

12: end for

13: until #(") and #(»~1) converge

14: Let (Zj-“)C = converged value of Pr(z§C = 1|Xj’?, 6(m)
15: for Each k € {1,2,...,L} do

16:  for Each j € C do

17: if (Z¥)¢ > 0.5 then

18: claim C]l. is true

19: else

20: claim C’;. is false

21: end if

22: end for

23: for Each ¢ € S do

24: calculate (r¥)* from converge values of (TF), (FF) and (dy)
based on Equation (5)

25: calculate r;* form (rf)* based on Equation (3)

26: end for

27: end for

B. Summary of The Hardness-Aware EM Algorithm

In summary, the input of the HA-EM algorithm is the
Sensing Matrix SC' and Hardness Vector H obtained from
the social sensing data. The output is the maximum like-
lihood estimation of estimation parameters and latent vari-
ables. The estimation results can be used to compute both
source reliability and claim correctness. We summarize the
HA-EM scheme in Algorithm 1.

V. EVALUATION

In this section, we evaluate the HA-EM scheme using
three real world case studies based on Twitter. We choose
Twitter as our social sensing application example because it
creates an ideal scenario where unreliable content with rich
information are collected from unvetted data sources (e.g.,
people report observations of different hardness degrees on
Twitter) [2]. In our evaluation, we compare HA-EM to
five representative baselines from current literature. The first
baseline is Voting, which computes the data credibility
simply by counting the number of times the same tweet
is repeated on Twitter. The second baseline is the Sums,
which explicitly considers the difference in source reliability
when it computes the data credibility scores [15]. The
third baseline is Average_Log, which explicitly considers
both source reliability and the number of claims the source
report [19]. The fourth baseline is TruthFinder which used a
pseudo-probabilistic model to represent the interdependence

between source reliability and claim correctness [41]. The
fifth baseline is the Regular EM, which was shown to
outperform four current truth discovery schemes in social
sensing [35].

We have implemented the HA-EM scheme and other
baselines in Apollo system, a social sensing platform that
we have developed to collect tweets from Twitter and track
the unfolding of real world events based on the collected
tweets [4]. Examples of such events include terrorist attack,
hurricane, earthquake, civil unrest and other natural and
man-made disasters. Specifically, Apollo has: (i) a data
collection front-end that allows users to collect tweets by
specifying a set of keywords and/or geo-locations and log
the collected tweets; (ii) a data pre-processing component
that efficiently clusters similar tweets into the same cluster
by using micro-blog data clustering methods [25].

Using the meta-data output by the data pre-processing
component of Apollo, we first generated the Sensing Matrix
SC' by taking the Twitter users as the data sources and
the clusters of tweets as the the statements of user’s ob-
servations, hence representing the claims in our model. We
then initialized the values of claims using a simple domain
classifier that can classify the claims into easy and hard
categories based on the content of the tweets. In particular,
the domain classifier was built using URL identification
such as “http” or "https” commonly found in tweets on
Twitter. Each cluster of claims was checked to see if it
contained more than one URL and if so it was classified
as easy. Otherwise, the claim was classified as hard. The
rationale is the claims with URLs are more likely to be
the repeated information from other external sources (e.g.,
news websites), hence are easy to make while claims without
URLs are more likely to be made by the users themselves.

One important note is that the above classifier is far
from being perfect due to its heuristic nature: it may mis-
classify easy claims as hard and vice versa. One goal of
our evaluation is to show that our HA-EM scheme can
actually achieve a significant performance improvement in
truth discovery compared to the state-of-the-art solutions
even given this rough and noisy estimation on claim hardness
degrees.

For the purposes of evaluation, we selected three real
world Twitter data traces, which were collected during the
events that happened in 2015. The first trace was collected
by Apollo during the Oregon Shooting event that happened
on October 1, 2015, which caused 10 death including the
gunman. It is the deadest event in Oregon’s history. The
second was collected during Baltimore Riots event that
happened on April 14, 2015, which were a series of riots
that followed the suspicious death of an African American
male, Freddie Gray while in police custody. The riots caused
several important events to be canceled and a state of
emergency declared in the city of Baltimore. The third trace
was during Paris Attacks event that happened on November



Trace Oregon Shooting Baltimore Riots | Paris Attacks

Start Date October 1, 2015 April 14, 2015 November 13, 2015
Time duration 6 days 17 days 11 days

Physical Location | Umpqua Community College, OR | Baltimore, MD | Paris, France

# of tweets 210,028 952,442 873,760

# of users tweeted 122,069 425,552 496,753

Table IIT
DATA STATISTICS OF THREE TRACES

13, 2015, which were a series of terrorist attacks that left
130 dead including at the Bataclan theatre where many were
taken hostage. It is the worst terrorist attack to occur in
Europe in 11 years. The three data traces are summarized
in Table III.

We randomly sampled 2020, 1850, and 1620 tweets from
the Oregon Shooting, Paris Attacks, and Baltimore Riots
data trace respectively for our evaluation '. We fed the
sampled tweets to the Apollo tool and ran all compared truth
discovery schemes on the sampled data. We manually graded
all claims using the following rubric:

o True claims: Claims that are statements of a physical or
social event, which is generally observable by multiple
independent observers and corroborated by credible
sources external to Twitter (e.g., mainstream news
media).

o False claims: Claims that do not satisfy the requirement
of true claims.

We note that the false claims may include some pos-
sibly true claims that cannot be independently verified by
external sources. Hence, our evaluation provides pessimistic
performance bounds on the estimates. Specifically, we fo-
cus on the estimation performance of different schemes
in terms of correctly identifying the true claims because
they consist of the actually useful information for social
sensing applications. In particular, we used the following
evaluation metric to evaluate the performance of all schemes
in terms of identifying the correct true claims: Accuracy =

TP+TN i TP _ TP
TP+TN+FP+FN’ Prec113s1on = 7prp> Recall = 755y
and Fl-measure = Q;T;Cegjsiﬁffjﬁu. The TP, TN, FP

and F'N represent true positives, true negatives, false posi-
tives and false negatives of the classification results.
Figure 2 shows the result for the Baltimore Riots trace.
We observe that the HA-EM scheme outperforms difficulty-
ignorant truth discovery schemes in identifying more truthful
claims and keeping the falsely reported claims least. This
is achieved by explicitly incorporating the emotional into
the maximum likelihood estimation framework. The per-
formance gain of HA-EM scheme compared to the best
performed baseline is significant: 3/% in accuracy, 9%
in precision, 49% in recall, and 29% in F1. The high per-
formance gain in recall is achieved by correctly identifying

I'This is because of the limited human power to label the ground truth
for all tweets.

many hard truthful claims that were misidentified as false
by other hardness ignorant schemes.
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Figure 2. Evaluation on Baltimore Riots Trace

We carried out further experiments to evaluate how news-
worthy and important the true claims identified by different
algorithms are. Specifically, we independently collected 10
important events reported by media during the Baltimore
Riots event to see if they are captured in our true claims.
We then scanned through the true claims identified by each
of the algorithms compared to find these events. Results are
shown in Table IV (due to space limit, we only showed
the comparison between the HA-EM scheme and the best
performed baseline: Regular-EM). We observed that all ten
events were covered by the true claims from the HA-EM
scheme while two of them were missing from the true claims
returned from the Regular-EM scheme. This result shows
that the truthful claims identified by the HA-EM scheme
are more newsworthy and potentially have higher impacts.

We repeated the above experiments on the Oregon Shoot-
ing and Paris Attack traces. The results are shown in Figure 3
and Figure 4. We observe that the HA-EM scheme continues
to achieve the best performance compared to all baselines
in terms of correctly identifying truthful claims. In the
Oregon Shooting, the performance gain of HA-EM scheme
compared to the best performed baseline is significant: 22%
in accuracy, 9% in precision, 42% in recall, and 20% in F1-
measure. The results on Paris Attack trace is similar: 27%
in accuracy, 8% in precision, 35% in recall, and 21%. For
the newsworthy events coverage, collecting 10 media events
that happened during the Oregon Shooting and Paris Attack



events respectively, we observed that the HA-EM found 9
and 10 of them, compared to 6 and 7 found by the best
performed baseline. Due to the space limit, we do not show
the detailed results here.
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Figure 3. Evaluation on Oregon Shooting Trace
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Figure 4. Evaluation on Paris Terrorist Attacks Trace

Finally, we also perform the convergence analysis of the
HA-EM scheme. In particular, we studied how the value
of negative log-likelihood function changes w.rt to the
number of iterations. The results are presented in Figure 5.
We observe the HA-EM scheme converges within a few
iterations on both data traces. The encouraging results from
real world data traces validate the effectiveness of using the
HA-EM scheme to obtain more truthful information in a real
world social sensing application by explicitly exploiting the
emotional information of claims.

VI. DISCUSSIONS AND FUTURE WORK

First, we assumed sources to be independent in our current
framework. However, sources may be dependent in some so-
cial sensing applications, especially when they are connected
through social networks. Several analytical models have
been recently developed to address non-independent sources
in social sensing using estimation theory [32] and machine

learning techniques [23]. It is reasonable to integrate these
techniques with our HA-EM scheme to explicitly model
source dependency in the MLE framework. Furthermore,
sources may have different expertise and report claims with
different reliability. For example, a civil engineer might be
very reliable in reporting the damage of buildings but might
not be equally reliable in reporting the habitat of birds.
In our current model, source reliability is represented by
a scalar variable, which is limited to representing the source
reliability on a single dimension. One possible solution is to
generalize the source reliability definition from a scalar to
a vector, where each dimension of the vector represents the
reliability in a particular knowledge domain.

Second, we did not assume dependency between claims.
However, reports on different claims might be inherently
correlated. For example, the average speed of segments
on the same road normally have similar distributions. The
hurricane risk predictions of communities in the same
neighborhood are usually highly correlated. Hence it is
important to understand how to appropriately incorporate
the claim dependency into our MLE framework. Several
recent techniques have been developed to model the de-
pendency between claims and take such dependency as
prior knowledge in their solutions [20], [30]. Inspired by
these results, we will further extend the HA-EM scheme to
incorporate the claim dependency (represented by the joint
distribution between correlated claims) into the likelihood
function and derive a claim-dependency-aware solution. The
general guideline of derivation should be similar as the one
presented in Section IV.

Third, the ground truth value of a claim was assumed to
be time-invariant in our current framework. This assumption
holds in the social sensing applications where the states
of the claim variables do not change in the observation
period [30], [35]. However, in systems where the state
of the environment may change quickly over time, it is
important to investigate the dynamics of the claim variables
as well. Recently, we have developed an extended MLE
framework to explicitly handle time variant claims in social
sensing [38]. Such extension can be easily integrated with
the HA-EM scheme since they use the same underlying
MLE framework. Moreover, we focus on binary claims in
this paper. This assumption is sufficient in many social
sensing applications where the states of the reported event
can be represented by a Boolean variables (e.g., litter exists
in a given location or not). However, our model can also
be easily extended to handle the case where claims have
arbitrary discrete values. The authors have recently made
some progress in this direction [31]. The key idea is to
extend the estimation parameter of our MLE model to cover
all possible states of the claim. The general outline of the
HA-EM derivation still holds.



GROUND TRUTH EVENTS AND RELATED CLAIMS FOUND BY HARDNESS-EM VS THE BEST PERFORMED BASELINE (REGULAR-EM) IN BALTIMORE

RIOTS

# | Media Tweet found by Hardness-EM Tweet found by the Best Baseline

1 The post-funeral demonstrations became | RT @BrianToddCNN: A police car and van | RT @BrianToddCNN: A police car and van
more tumultuous as the afternoon wore on, | burned on the streets of Baltimore. #Balti- | burned on the streets of Baltimore. #Balti-
with a police car and van being torched and | moreRiots http://t.co/Q4k6W90oQLK moreRiots http://t.co/Q4k6W90oQLK
several storefront windows broken.

2 | A mother in Baltimore caught her son, | VIDEO: Mother seen dragging | RT @Independent: Furious mother marches
whom she suspected of rioting, and hit him. | son away from #Baltimore- | her son home from Baltimore riots
She sent him home on live TV. Riots. http://t.co/gKkZj6sg2j | live on TV  http://t.co/OiSbX4m4uy

http://t.co/TVOb26SUgj: http://t.co/cpOSoFC3h6

3 Mayor Stephanie Rawlings-Blake defended | Mayor Stephanie Rawlings-Blake defended | MISSING
her handling of the recent rioting in Balti- | her handling of the recent rioting in Balti-
more, arguing Tuesday that more aggressive | more, arguing Tuesday that more aggressive
police or military tactics could have esca- | police or military tactics could have esca-
lated the violence lated the violence

4 | A CVS pharmacy, which had been looted | cnni: The CVS destroyed in #BaltimoreRi- | MISSING
after its windows were smashed, was then | ots — complete devastation. More photos as
set ablaze we get them here: http://t.co/YtmVvz53Nm

5 “’There’s no excuse for the kind of violence | CNN: .@BarackObama on Baltimore un- | CNN: .@BarackObama on Baltimore un-
that we saw yesterday. It is counterproduc- | rest: "No excuse for the kind of violence | rest: "No excuse for the kind of violence
tive,” Obama said at a press conference from | we saw yesterday.” http://t.co/tmH7Kq2otl we saw yesterday.” http://t.co/tmH7Kq2otl
the White House.

6 | The American Heart Association announced | American Heart Association cancels Balti- | American Heart Association cancels Balti-
last night the cancellation of a medical | more conference: http://t.co/DjkbXJ7P6b by | more conference: http://t.co/DjkbXJ7P6b by
conference in Baltimore due to the unrest | @cardiobrief: @cardiobrief:
in the city.

7 The Baltimore Orioles postponed a second | Orioles postpone game vs. White Sox amid | Orioles postpone game vs. White Sox amid
straight game against the Chicago White | riots in Baltimore http://t.co/WwNjKaGP025: | riots in Baltimore http://t.co/wNjKaGP025:
Sox on Tuesday after a night of rioting near
Camden Yards.

8 The Baltimore mayor’s office said earlier | 200 arrests, 144 car fires, 15 buildings | “200 arrests, 144 car fires, 15 buildings
Tuesday there were 144 vehicle fires, 15 | burned...” http://t.co/61mCjmEMws: burned...” http://t.co/61mCjmEMws:
structure fires and nearly 200 arrests in the
unrest Monday.

9 | The remarks about giving space to “those | Baltimore Mayor Stephanie Rawlings-Blake | MISSING
who wished to destroy” generated swift, | Under Fire For ’Space’ to Destroy Com-
strong criticism amid more than two dozen | ment
arrests, at least 15 police officers injured,
and looting and arson in the city.

10 | Volunteers and business owners clean up af- | nytimes: Volunteers pick up broken | nytimes: Volunteers pick up broken
ter an evening of riots following the funeral | glass after a night of riots in Baltimore | glass after a night of riots in Baltimore
of Freddie Gray on Tuesday. http://t.co/Sx7d2YZIIw (Photo: AlJ. | http://t.co/SxTd2YZIIw (Photo: Al

Chavar/NYT) Chavar/NYT)
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Figure 5. Convergence Analysis of HA-EM

VII. CONCLUSION

problem in social sensing applications. The proposed HA-
EM scheme explicitly incorporates the claim hardness into

This paper develops a hardness-aware maximum like- ) -
a rigorous analytical framework. The proposed approach

lihood estimation framework to solve the truth discovery



jointly estimates both source reliability and claim correctness
using an expectation maximization algorithm. We evaluated
the HA-EM scheme through three real world case studies
in social sensing applications. The results showed HA-
EM achieved non-trivial performance gains in improving
the truth discovery accuracy compared to the Regular-EM
and other state-of-the-art techniques that ignored the claim
hardness in their solutions. The results of the paper is
important because it lays out an analytical foundation to
exploit different degrees of claim hardness in social sensing
using a principled approach.
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