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Abstract—Social sensing has emerged as a new data collec-
tion paradigm in networked sensing applications where humans
are used as “sensors” to report their observations about the
physical world. While many previous studies in social sensing
focus on the problem of ascertaining the reliability of data
sources and the correctness of their reported claims (often
known as truth discovery), this paper investigates a new problem
of critical source selection. The goal of this problem is to identify
a subset of critical sources that can help effectively reduce
the computational complexity of the original truth discovery
problem and improve the accuracy of the analysis results.
In this paper, we propose a new scheme, Critical Sources
Selection (CSS) scheme, to find the critical set of sources by
explicitly exploring both dependency and speak rate of sources.
We evaluated the performance of our scheme and compared it
to the state-of-the-art baselines using two data traces collected
from a real world social sensing application. The results showed
that our scheme significantly outperforms the baselines by
finding more truthful information at a faster speed.

Keywords-Source Selection, Source Dependency, Speak Rate,
Social Sensing, Twitter

I. INTRODUCTION

This paper develops a new scheme to solve the critical
source selection problem in social sensing applications.
Social sensing has emerged as a new networked sensing
paradigm of collecting observations about the physical en-
vironment from humans or devices on their behalf. This
paradigm is motivated by the proliferation of digital sensors
in the possession of common individuals (e.g., smartphones)
and the wide adaptation of online social media (e.g., Twitter,
Facebook). In social sensing applications, people can report
certain observations of their environment, such as traffic
condition at various locales [7], pothole information on
streets [19] and available gas stations in the aftermath of
a disaster [34]. One key challenge of using “humans as
sensors” is to estimate the correctness of observations (i.e.,
claims) and the reliability of data sources without knowing
either of them a priori. We refer to this problem as truth
discovery problem.

In this paper, we study a new problem of critical source
selection where the goal is to identify a subset of critical
sources that can help effectively reduce the computational
complexity of the original truth discovery problem and im-
prove the accuracy of the analysis results. First, it is critical
to consider the source dependency in solving this problem.
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Figure 1. Source Dependency Examples on Twitter

In social sensing, it is not unusual for a human source to
forward claims they received from others (e.g., friends from
their social networks) [39]. Figure 1 shows some simple ex-
amples extracted from real-word Twitter data where sources
with social connections (i.e., following relationship) report
the same claim. From a networked sensing perspective, such
dependency between sources can easily introduce correlation
and redundancy between reported observations, which are
shown to affect truth discovery results negatively if they are
not appropriately modeled [34]. Previous works [12], [34],
[25] have started to consider the source dependency between
sources in truth discovery tasks by partitioning them into
independent groups where sources in different groups are
considered to be independent. However, the complexity of
their solutions grows exponentially with respect to the max-
imum size of the independent group, making them imprac-
tical in many large-scale social sensing applications [12].
In this paper, we develop a new source selection scheme
to explicitly consider the source dependency in the source
selection process.

In addition to the source dependency, the speak rate of
a source (i.e., how chatty a source is) is another important
factor to consider in the critical source selection solution.
In social sensing, different sources often report different
number of claims (e.g., some sources are more chatty than
others). The speak rate of a source has been found to has
a strong positive correlation with both the accuracy and the
granularity of the source reliability estimation, which also
directly affects the estimation of the claim correctness [18].
Therefore, the goal of our critical sensor selection scheme
is to (i) maximize the average speak rate of the selected
sources and (ii) minimize the dependency between them.
However, those two objectives can be at odds with each



other, which makes the critical sensor selection problem a
non-trivial problem to solve.

Previous work has made significant progress to study
the problem of source selection in sensor network and
data fusion [32], [27], [6], [10]. However, most of current
solutions either ignore the source dependency or the speak
rate in their models, which have led to suboptimal source
selection results by selecting redundant sources or sources
with inaccurate source reliability estimations. In this paper,
we present a Critical Source Selection (CSS) scheme that
explicitly incorporates both the source dependency and the
speak rate feature into the critical source selection process.
In particular, we formulate our critical source selection
problem as a constraint optimization problem with multiple
objectives and develop an efficient algorithm to solve it. We
evaluated our CSS scheme in comparison with the state-
of-the-art baselines using two real-world social sensing data
traces collected from Twitter (i.e., one for Paris Attack event
and the other for Oregon Shooting event, both in 2015). The
results showed that our scheme significantly outperforms the
baselines by finding more truthful information at a faster
speed.

In summary, our contributions are as follows:
• In this paper, we investigate the problem of critical

source selection in social sensing to reduce the com-
plexity of a truth discovery problem and improve the
accuracy of estimation results at the same time.

• We develop a new approach (i.e., CSS scheme) that
selects a critical set of sources by exploring both the
source dependency and their speak rates.

• We perform extensive experiments to compare the
performance of our CSS scheme with the-sate-of-the-
art baselines using real-world social sensing data. The
evaluation results demonstrate the effectiveness and
efficiency of our scheme.

The rest of this paper is organized as follows: we discuss
the related work in Section II. In Section III, we present the
problem of critical source selection. The proposed critical
source selection scheme is discussed in Section IV. Experi-
ment and evaluation are presented in Section V. Finally, we
conclude the paper in Section VI.

II. RELATED WORK

Social Sensing. Social sensing has emerged as a new
sensing paradigm which attracted much attention in sensor
networks research [1]. The ideas of getting people involved
into the loop of the sensing process (e.g., participatory [4],
[35], opportunistic [17], [11] and human-centric sensing [9],
[37]) have been extensively studied in projects such as
MetroSense [5], Urban Sensing [16] and SurroundSense [3].
The idea of using humans as sensors themselves came more
recently [30]. For example, human sensors can contribute
their observations through “sensing campaigns” [26], [13]
or social data scavenging [36], [40]. Current works in

social sensing have addressed many important challenges
such as privacy perseverance [38], incentives design [28],
scalability [15], [41] and social interaction promotions [31].
However, the source selection remains to be a critical and
open research question in social sensing. In this work, we
study the problem of critical source selection to reduce
the computational complexity of the original truth discovery
problem and improve the accuracy of the analysis results.

Truth Discovery in Social Sensing. Data quality and
trustworthiness is one of the fundamental challenges in
social sensing. Prior works in social sensing have made
significant advances to infer the credibility of reported
data [24], [12], [23], [33], [34], [14]. For example, Ouyang
et al. [24] investigated the potential of leveraging crowds as
sensors to detect the true value of quantitative characteristics
from noisy social sensing data. Huang et al. explored the
topic relevance of claims and arbitrary source dependency
problem in social sensing and developed a topic-aware
truth discovery solution [12]. Meng et al. developed a truth
discovery scheme that considers the correlated claims by
modeling claims’ correlations as regularization terms [23].
Zhao et al. studied the problem of real-time truth discovery
and developed a probabilistic model to efficiently handle
the streaming data [42]. Marshall et al. investigated the
semantics of the claims in the truth discovery solutions of
social sensing [20], [22], [21]. Wang at al. considered source
dependency by assuming that it can be represented by sets
of disjoint trees [34]. All the above works solve the truth
discovery problem and focus on modeling the relationship
between source reliability and claim correctness. In contrast,
this paper solves a new problem of critical source selection
which can help improve both effectiveness and efficiency of
the above truth discovery solutions.

Source Selection in Social Sensing. There exists a
good amount of work on the topic of source selection in
networked sensing, data mining and data base communi-
ties [32], [27], [6], [2], [10]. For example, Uddin et al.
investigated the problem of diversifying the source selection
in social sensing based on the social connections between
sources. Rekatsinas et al. [27] studied the problem of source
selection for dynamic sources whose contents change over
time. Dong et al. [6] proposed an algorithm to select a subset
of sources in data fusion applications by considering integra-
tion cost. Hosseini et al. selected the subset of data sources
to predict the state of all other sources by considering
source correlations [10]. Amintoosi et al. [2] proposed a a
privacy-aware participant selection framework that explicitly
protects user’s privacy in the social sensing applications.
However, most of current solutions either ignore the source
dependency or the speak rate in their models. In contrast,
this paper explicitly incorporates both the source dependency
and speak rate into the critical source selection process.



III. PROBLEM FORMULATION

We consider a social sensing scenario where a set of
X sources (denoted as S) who jointly report a set of Y
claims (denoted as C). We denote an individual source
as Si ∈ S, i ∈ [1, ..., X] and an individual claim as
Cj ∈ C, j ∈ [1, ..., Y ], where i and j are the source and
claim index respectively. The same claim can be made by
multiple sources and each source can report multiple claims.
We define the following terms we will use in our problem
formulation.

Definition 1. Source-Claim Matrix SC. We define Source-
Claim Matrix SCX×Y to represent whether a source reports
a claim or not. In particular, in SC, we set SCi,j = 1 if
source Si reports claim Cj and SCi,j = 0 otherwise.

Definition 2. Speak-Rate Vector SR. We define Speak-Rate
Vector SRi to represent how chatty a source is. Specifically,
the element SRi in SR is the number of claims reported by
source Si normalized by the total number of claims: SRi =
ΣY

j=1SCi,j

Y .

Definition 3. Source-Dependency-Score Matrix SDS. We
define Source-Dependency-Score Matrix SDSX×X to rep-
resent dependency between each pair of sources. Specifi-
cally, the element SDSi,i′ in SDS is the number of common
claims reported by both source Si and Si′ .

We summarize the defined notations in Table I.

Table I
SUMMARY OF NOTATIONS

Symbol Interpretation

S set of sources
C set of claims
SC source-claim matrix
SR speak-rate vector
SDS source-dependency-score matrix

In social sensing applications, the estimation accuracy
of source reliability is positively correlated with the speak
rate of data sources [36]. The first objective of our critical
source selection problem is to maximize the speak rates of
the set of selected sources. Furthermore, observations from
independent sources often provide more critical information
to solve the truth discovery problem [34]. In Definition 3,
we use the number of commonly reported claims to measure
the dependency between two sources. This is based on the
assumption that two independent sources are less likely to
report many claims in common [12]. Therefore, the second
objective here is to minimize the dependency between the
selected sources. Finally, the claims reported by the selected
sources should cover all claims in C for the completeness
of the problem.

With the above definitions, we can formulate the critical
source selection problem as follows: given the Source-Claim
Matrix SCX×Y , Speak-Rate Vector SRX and Source-
Dependency Matrix SDSX×X , the goal is to select the
set of critical sources (denoted by S∗) whose reported
claims can cover the claim set C by maximizing their total
speak rates and minimizing their total dependency scores.
Formally, the problem can be represented as follows:

max

X∑
i=1

CVi · δi

min

X∑
i=1

∑
i′ 6=i

SDSi,i′ · δi · δi′

s.t. δi ∈ 0, 1, i = 1, ..., X⋃
CSi

= C, Si ∈ S (1)

where δi = 1(or 0) indicates that source Si is selected (or
not).

IV. SOURCE SELECTION

In the previous section, we formulate the critical source
selection problem as a constraint optimization problem. One
possible solution to the optimization problem is to perform
brute-force search. However, the time complexity of brute-
force search is O(2|S|) (|S| is the number of sources), which
is not scalable in many practical social sensing applciations.
There we need to develop a more efficient solution. In
the rest of this section, we first prove that the formulated
critical source selection problem is NP-hard. We then present
the details of our CSS scheme and summarize it using a
pesudocode.

A. Complexity Analysis of the Formulated Problem

In this subsection, we prove the formulated problem is a
NP-hard problem. Based on the definitions in Section III,
we construct a graph G = (S,C;ES , ESC) based on the
Source-Claim Matrix SC, Source-Dependency-Score Matrix
SDS and Speak-Rate Vector SR as follows:
• A source Si represents a vertex in S;
• A claim Cj represents a vertex in C;
• ES is the set of edges between the vertices of S to

represent the dependency between sources in SDS. In
particular, if the element SDSi,i′ > 0, we have an edge
between source Si and Si′ .

• ESC is the set of edges between vertices of S and C
to represent report behaviors in SC. Specifically, if the
element SCi,j in SC is 1, we have a edge between
source Si and claim Cj .

• We define wvi as SRi (i.e., speak rate of source Si)
to represent the vertex weight of vertex Si and wei,i′

as SDSi,i′ (i.e., dependence score between source Si

and Si′ ) to represent the edge weight between vertex
Si and Si′ .



• We further define two weight functions wES
: ES 7→

R+ and wS : S 7→ R+ to represent the dependency
scores between sources and speak rates of sources
respectively.

The objective is to find a subset S∗ of S such that every
vertex in C is connected to the vertex in S∗ and satisfies
the following objective functions:

i) the sum of vertex weights in S∗ (i.e., Σ wvi; Si ∈
S∗) is maximized;

ii) the sum of edge weights wei,i′ in the subgraph
induced by S∗ (i.e., Σ wei; Si, Si′ ∈ S∗) is
minimized;

We first consider a simplified version of the above prob-
lem by only considering the objective of minimizing the total
dependency scores of selected sources. If we can prove that
this simplified version is NP-hard, the original version is
also NP-hard. We formally define the decision version of
the simplified problem as follows:

Definition 4. Given a graph G = (S,C;ES , ESC), a weight
function wES

: ES 7→ R+, a weight function wS : S 7→ R+,
and a positive number k, where S and C are two sets of
vertices. ES is a set of edges only among the vertices of
S. ESC is a set of edges between vertices S and C. The
objective is to decide whether there is a subset S∗ of S
such that every vertex in C is connected to the vertex in S∗

and the sum of edge weights in the subgraph induced by S∗

is at most k.

To prove that the simplified version is NP-hard, we need
to demonstrate that the decision version is NP-complete.
After that, we can conclude that the problem formulated
in Equation (1) is NP -hard.

B. The Critical Source Selection Scheme

The proof in above section shows that the formulated
problem is NP-hard, we need to develop an efficient solution.
In this work, we propose the Critical Source Selection (CSS)
scheme to select the critical set of sources.

Based on the problem formulation in Equation (1), there
are two objectives: (i) maximize the speak rates of the
selected sources; (ii) minimize the dependency scores be-
tween the selected sources. We take a common approach
in optimization and convert multi-objective programming to
single-objective programming using linear combination [43].
We can rewrite Equation (1) as:

max

X∑
i=1

SRi · ηi − ϕ ·
X∑
i=1

∑
i′ 6=i

SDSi,i′ · ηiηi′

s.t. ηi ∈ 0, 1, i = 1, ..., X⋃
CSi

= C, Si = 1 and Si ∈ S (2)

where ϕ is a parameter to balance our two objectives.

We denote a graph Gs = (S,ES ,We,Wv), where We,
Wv represent the set of edge weights and the set of vertex
weights respectively. Without loss of generality, we use vi,
ei,i′ , wei,i′ , wvi to represent the vertex, edge, edge weight
and vertex weight respectively (i ∈ [1, ..., X], i′ ∈ [1, ..., X]
and i 6= i′). In this work, vi is source Si. ei,i′ represents the
dependency relationships between source Si and Si′ . We
further define Nei as the vertices which are connected to
vertex vi and t as the iteration index.

In particular, we first construct a set S∗ and C∗ to
contain the selected sources and the set of claims reported
from the selected sources. The key steps of CSS scheme is
summarized as:
• We initialize S∗ and C∗ as ∅.
• We do the following three sub-steps iteratively:

i) We select the vertex in graph Gs with the
largest vertex weight wvi. Without loss of
generality, we denote the selected node as vi.

ii) We conduct vertex weight updates on other
vertices which connected to vertex vi. Specifi-
cally, the weight wvi′ on vertex vi′ (i′ ∈ Nei)
is updated as wvi′ = wvi′ − wei,i′ · ϕ. Here,
we update the vertex weight of the connected
vertices of vi by balancing the two objectives
in Equation (2).

iii) We add vertex vi to the set of selected sources
S∗ and remove it from graph Gs together with
all the edges connected to vertex vi.

Figure 2 shows a simple illustrative example for CSS
Scheme. In the source selection process, we firstly select
vertex v5 with the largest vertex weight. After that, we
update the vertex weights of the vertices connected to v5

and remove v5 as well as the corresponding edges from the
current graph.
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Figure 2. Simple Illustrative Example for CSS Scheme

In summary, the input to the CSS scheme is the generated
graph Gs and the claims set C. The output of the CSS
scheme is the set of critical sources S∗. The CSS scheme is
summarized in Algorithm 1. The time complexity of the first
step (i.e., vertex selection) is of order O(|S|) and the time
complexity of the second step (i.e., vertex weight update) is
also of order O(|S|). We iteratively conduct the above two
steps until C∗t+1 = C∗t ∪CSi

. Therefore, the time complexity



Algorithm 1: Critical Source Selection (CSS) Scheme
1: Input: A weighted and undirected graph
Gs = (S,ES ,We,Wv) and the full set of claim C.

2: Output: A set of selected sources S∗.
3: Initialize: S∗0 ← ∅, C∗0 ← ∅, G0

s ← Gs, E0
S ← ES ,

t← 0
4: repeat
5: Select the vertex in graph Gs with the largest vertex

weight. (without loss of generality, we suppose that
the selected node is vi)

6: for each i′ ∈ [1, ..., X] and i′ 6= i do
7: wvi′ ← wvi − wei,i′ · ϕ
8: S∗t+1 ← S∗t ∪ {vi}
9: Gt+1

s ← Gt
s − {vi}

10: Et+1 ← Et − {ei,i′}
11: C∗t+1 = C∗t ∪ CSi

12: end for
13: t = t+ 1
14: until C∗t = C

of our CSS algorithm is of order O(|S| · |S∗|), where |S∗| is
the size of selected critical source set. Since |S∗| is normally
much smaller than |S|, the CSS scheme is scalalbe in large-
scale social sensing applications. Finally, we can also prove
our model is an additive model and the CSS scheme can
find the optimal solutions under a normal condition that has
been widely used in additive models [8].

V. EVALUATION

In this section, we conduct experiments to evaluate the
performance of the CSS (Critical Source Selection) scheme
on two real-world data traces collected in a real world social
sensing application. We demonstrate the effectiveness and
efficiency of our proposed methods on these data traces and
compare the performance of our scheme to the state-of-the-
art baselines. In the rest of this section, we first present the
experiment settings and data pre-processing steps that were
used to prepare the data for evaluation. Then we introduce
the state-of-the-art baselines and evaluation metrics we used
in evaluation. Finally, we show that the evaluation results
demonstrate that CSS scheme can help to achieve better truth
discovery results by judiciously selecting the critical set of
sources.

A. Experimental Setups and Evaluation Metrics

1) Data Trace Statistics: In this paper, we evaluate our
proposed scheme on two real-world data traces collected
from Twitter in the aftermath of recent emergency and
disaster events. Twitter has emerged as a new social sens-
ing experiment platform where massive observations are
uploaded voluntarily from human sensors to document the
events happened in the physical world. On Twitter, users

have both explicitly (e.g., following relationship) and im-
plicit (e.g., retweet behavior) dependency and tweet with
different speak rates. These features of Twitter users provide
us a good opportunity to investigate the performance of
the CSS scheme in real world social sensing scenarios. In
the evaluation, we selected two data traces: (i) Paris Attack
event that happened on Nov, 2015; (ii) Oregon Shooting that
happened on Oct, 2015. These data traces were collected
through Twitter open API using query terms and specified
geographic regions related to the events. The statistics of the
two data traces are summarized in Table II.

Table II
DATA TRACES STATISTICS

Data Trace Paris Attack Oregon Shooting
Start Date 11/13/2015 10/1/2015
Physical Loca-
tion

Paris, France Umpqua, Oregon

Search
Keywords

Paris, Attacks, ISIS Oregon, Shooting,
Umpqua

# of Tweets 873,760 210,028

2) Data Pre-Processing: To evaluate our methods in real
world settings, we went through the following data pre-
processing steps to generate the inputs for the CSS scheme:
(i) Source-Claim Matrix (i.e., SC Matrix); (ii) Speak-Rate
Vector (i.e., SR Matrix); (iii) Source-Dependency-Score
Matrix (i.e., SDS Matrix). They are summarized as follows:
• Source-Claim Matrix Generation: We generate the SC

Matrix as follows: we cluster similar tweets into the
same cluster using a clustering algorithm based on K-
means and a commonly used distance metric for micro-
blog data clustering (i.e., Jaccard distance) [29]. In
particular, the Jaccard distance is defined as 1− A∩B

A∪B ,
where A and B represents the set of words that appear
in a tweet. Hence, the more common words two tweets
share, the shorter Jaccard distance they have. We then
take each Twitter user as a source and each cluster
as a claim in our social sensing model described in
Section III. Second, we generate the SC Matrix by
associating each source with the claims he/she reported.
In particular, we set the element SCi,j in SC matrix to
1 if source Si generates a tweet that belongs to claim
(cluster) Cj and 0 otherwise.

• Speak-Rate Vector Generation: We generate the SR
Vector based on the constructed SC Matrix from the
previous step. In particular, element SRi in SR is the
number of claims reported by source Si normalized by
the total number of claims. Formally, SRi =

ΣY
j=1SCi,j

Y .
• Source-Dependency-Score Matrix Generation: We gen-

erate the SDS Matrix based on source reporting be-
haviors on Twitter. In particular, we generated the
source dependency graph as an arbitrary undirected
graph Gsds = (Vsds, Esds,Wsds) where Vsds repre-
sents sources, Esds represents their dependency links,



Wsds represents their dependency degree. We used the
following heuristic to generate the links in the graph
Gsds: an undirected edge from source Si to source
Si′ is added if there exists claim reported by both
source Si′ and Si. We then constructed the Social-
Dependency-Score Matrix SDS by setting the corre-
sponding element SDSi,i′ as the number of claims
reported by both source Si and Si′ . We note that the
above heuristic is only first approximations to estimate
source dependency from real world data. In the future,
we will explore more comprehensive techniques to
further refine our estimation of source dependency
graphs.

3) Evaluation Metric: In our evaluation, we use the fol-
lowing metrics to evaluate the estimation performance of the
CSS scheme: Precision, Recall, F1-measure and Accuracy.
Their definitions are given in Table III.

In Table III, TP , TN , FP and FN represents True
Positives, True Negatives, False Positives and False Neg-
atives respectively. We will further explain their meanings
in the context of experiments carried out in the following
subsections.

Table III
METRIC DEFINITIONS

Metric Definition

Precison TP
TP+FP

Recall TP
TP+FN

F1−measure 2×Precison×Recall
Precison+Recall

Accuracy TP+TN
TP+TN+FP+FN

B. Evaluation of Our Methods

In this subsection, we evaluate the performance of the
proposed CSS scheme and compare it to the state-of-the-art
source selection techniques. The baselines we used include:
• DS: it selects a set of diversified sources by only

considering the dependency between sources using a
set of heuristic based approaches in social sensing
applications [32].

• FS: it selects a set of sources by considering source
freshness based on the source reporting behaviors [27].

• PS: it selects the subset of data sources to predict
the state of all other sources by considering source
dependency in order to minimize the prediction errors
on disaster response [10].

To evaluate all source selection schemes, we use the
selection results from different algorithms as input to the
state-of-the-art truth discovery techniques that include:
• IPSN16: it explores topic relevance feature of claims

and the arbitrary source dependency between sources
to ascertain the correctness of claims [12].

• Sensys15: it solves the problem of truth discovery for
correlated claims by modeling claims’ correlations as
regularization terms [23].

• IPSN14: it solves the truth discovery problem by explic-
itly modeling the dependency between sources on social
networks using an estimation theoretic approach [34].

In our evaluation, we combine each source selection
scheme with different truth discovery techniques on claim
correctness estimation. We manually graded the output of
these combinations to determine the correctness of the
claims. Considering the manpower limitations, we took the
union of the top 50 claims returned by different schemes
as our evaluation set in order to avoid the bias towards any
particular scheme. The following rubric is used to collect
the ground truth information of the evaluation set:
• True Claims: Claims that are statements of an event,

which is generally observable by multiple independent
sources and can be corroborated by credible sources
external to Twitter (e.g., mainstream news media).

• Undecided Claims: Claims that do not meet the criteria
of true claims.

We note that undecided claims can potentially consist of
two types of claims: (i) true claims that cannot be indepen-
dently verified by external sources; (ii) false claims. Thus,
our evaluation actually provides pessimistic performance
bounds on estimations by treating undecided claims as false.

The evaluation results of Paris Attack data trace are
shown in Table IV. We can observe that CSS scheme
outperforms the compared baselines with different truth
discovery techniques in all evaluation metrics. The largest
performance gain achieved by CSS on F1-measure and
accuracy over the best performed baseline (i.e., PS) are 10%
and 9% respectively. The results of Oregon Shooting data
trace are presented in Table V. We can observe that CSS
scheme continues to outperform all baselines with different
truth discovery techniques. The performance improvements
of CSS are achieved by explicitly considering both the
source dependency and source speak rate in sensor selection
process, one of the main contributions of this paper.

Table IV
SOURCE SELECTION EVALUATION ON PARIS ATTACK DATA TRACE

Alg Truth Discovery Accuracy Precision Recall F1-score

IPSN16 0.700 0.803 0.741 0.771
SS Sensys15 0.637 0.704 0.825 0.760

IPSN14 0.688 0.799 0.738 0.767

IPSN16 0.489 0.655 0.560 0.604
DS Sensys15 0.546 0.700 0.610 0.652

IPSN14 0.486 0.642 0.589 0.614

IPSN16 0.567 0.788 0.516 0.624
FS Sensys15 0.572 0.697 0.680 0.688

IPSN14 0.617 0.787 0.618 0.692

IPSN16 0.600 0.797 0.560 0.658
PS Sensys15 0.572 0.697 0.680 0.689

IPSN14 0.615 0.788 0.611 0.688



Table V
SOURCE SELECTION EVALUATION ON OREGON COLLEGE SHOOTING

DATA TRACE

Alg Truth Discovery Accuracy Precision Recall F1-score

IPSN16 0.648 0.702 0.803 0.749
SS Sensys15 0.636 0.685 0.822 0.747

IPSN14 0.633 0.696 0.780 0.735

IPSN16 0.522 0.681 0.509 0.583
DS Sensys15 0.572 0.681 0.649 0.665

IPSN14 0.519 0.683 0.495 0.574

IPSN16 0.568 0.683 0.635 0.658
FS Sensys15 0.581 0.708 0.612 0.656

IPSN14 0.556 0.676 0.616 0.645

IPSN16 0.559 0.678 0.621 0.649
PS Sensys15 0.544 0.699 0.532 0.605

IPSN14 0.544 0.673 0.588 0.628

VI. CONCLUSION

In this paper, we develop a new critical source selection in
social sensing to effectively reduce the complexity of a truth
discovery problem and improve the accuracy of estimation
results at the same time. In particular, our proposed scheme
(CSS scheme) explicitly explores the source dependency and
speak rate in the solution of critical source selection. We
perform extensive experiments to compare the performance
of our CSS scheme with the-sate-of-the-art baselines using
real-world social sensing datasets. The evaluation results
demonstrate the effectiveness and efficiency achieved by our
scheme.
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