
DeepRisk: A Deep Transfer Learning Approach to
Migratable Traffic Risk Estimation in Intelligent

Transportation using Social Sensing
Yang Zhang, Hongxiao Wang, Daniel Zhang, Dong Wang

Department of Computer Science and Engineering
University of Notre Dame

Notre Dame, IN, USA
{yzhang42, hwang21, yzhang40, dwang5}@nd.edu

Abstract—This paper focuses on the migratable traffic risk
estimation problem in intelligent transportation systems using
the social (human-centric) sensing. The goal is to accurately
estimate the traffic risk of a target area where the ground
truth traffic accident reports are not available by leveraging an
estimation model from a source area where such data is available.
Two important challenges exist. The first challenge lies in the
discrepancy between source and target areas (e.g., layouts, road
conditions, and local regulations) and such discrepancy would
prevent a direct application of a model from the source area
to the target area. The second challenge lies in the difficulty
of identifying all potential features in the migratable traffic
risk estimation problem and decide the importance of identified
features due to the lack of ground truth labels in the target
area. To address these challenges, we develop DeepRisk, a social
sensing based migratable traffic risk estimation scheme using
deep transfer learning techniques. The evaluation results on a
real world dataset in New York City show the DeepRisk signif-
icantly outperforms the state-of-the-art baselines in accurately
estimating the traffic risk of locations in a city.

Keywords-Social Sensing, Intelligent Transportation, Migrat-
able Traffic Risk Estimation, Deep Transfer Learning

I. INTRODUCTION

Social sensing has emerged as a new networked sensing
paradigm that uses humans as sensors to report the states of
the physical world [1]. Examples of social sensing applications
include tracking the real-time traffic condition using mobile
crowdsensing [2], obtaining the real-time disaster and emer-
gency awareness using online social media [3], and monitoring
the urban air quality using reports from citizens [4]. Compared
to traditional sensing paradigms that use physical sensors,
social sensing has been shown to be more pervasive, scalable
and economic in its applications [5]. In this paper, we focus
on a migratable traffic risk estimation problem in intelligent
transportation systems using social sensing. Our goal is to
accurately estimate the traffic accident rate of locations in a
target area where the ground truth traffic accident reports are
not available by leveraging an estimation model from a source
area where such data is available.

Previous efforts have been made towards addressing the
traffic risk estimation problem in data mining, networked
sensing, and intelligent transportation systems [6]–[10]. Those
solutions primarily rely on historic ground truth labels of

traffic accidents in the studied area to build reliable estima-
tion models. However, such ground truth data is not always
available in many places due to various resource constraints
and privacy/legal concerns. For example, less than 1% of cities
in United States have open web portals to access their traffic
accident data 1. The traffic monitoring devices are prohibited
by law in 10 states in United States 2. On the other hand, the
rich traffic information collected by some widely deployed
mobile crowdsensing applications (e.g., Waze) is privately
owned by the companies and not available to the public
access [11]. The lack of publicly available ground truth data
on traffic accidents presents a fundamental challenge to the
traffic risk estimation problem.

To address the above challenge, this paper develops a social
sensing based deep transfer learning solution to estimate the
traffic risk of locations in an area where the ground truth traffic
accident data is not available. For example, consider the traffic
risk estimation problem in two cities near our campus: South
Bend and Mishawaka. The two cities are both located in the
northern Indiana region with similar population densities (i.e.,
2,457/sq mi vs. 2,765/sq mi) and weather conditions (i.e., long
snow season). However, the city of South Bend has an open
data portal for accessing traffic accident data of the city 3

motivated by its smart city initiative but Mishawaka does not.
In this example, our goal is to estimate the traffic risk of
locations in Mishawaka (target area) by “migrating” the traffic
risk estimation model learned in South Bend (source area).
Such a migratable traffic estimation problem is not trivial to
solve due to several technical challenges elaborated below.

Discrepancy Between Source and Target Areas. A simple
solution to address the migratable traffic risk estimation prob-
lem is to directly apply the estimation model learned from
the source area to estimate the traffic risks in the target area.
However, a major issue of this solution is that the target and
source areas may be different in many aspects (e.g., layouts,
road conditions, traffic volumes, and local regulations) that

1https://www.forbes.com/sites/metabrown/2017/06/30/quick-links-to-
municipal-open-data-portals-for-85-us-cities/#274a68962290

2https://www.iihs.org/iihs/topics/laws/automated enforcement/
enforcementtable?topicName=speed

3https://data-southbend.opendata.arcgis.com/



would prevent a direct application of a model learned from the
source area to the target area [12]. Such discrepancy between
the source and target areas can potentially lead to the unde-
sirable overfitting problems in the estimations (i.e., the model
learned from the source area might be an overfitted model
to estimate traffic risk in the target area) [13]. Therefore, the
migrated estimation model needs to explicitly accommodate
the discrepancy between different areas.

Complex and Latent Risk Features. The second challenge
refers to the fact that it is extremely difficult (if possible) to
identify all relevant features in the migratable traffic risk esti-
mation problem due to the arbitrarily large feature space and
the latent nature of certain features (e.g., cognitive conditions
of drivers, the driving habits of an area) [8]. Furthermore, it is
also challenging to decide the importance (e.g., weights) of the
identified features in an estimation model when the training
data set is insufficient or not available at all (e.g., target areas in
our problem). Therefore, it is a not trivial task to automatically
identify a critical set of complex and latent traffic risk features
and encode them into the migratable estimation model.

To address the above challenges, we develop DeepRisk, a
social sensing based migratable traffic risk estimation scheme
using deep transfer learning techniques. To address the chal-
lenge of discrepancy between source and target areas, we
develop a principled deep transfer learning framework to
effectively migrate the risk estimation model from the source
area to the target area through a novel transformation neural
network design. To address the complex and latent risk feature
challenge, DeepRisk judiciously learns the traffic risk related
features through a novel adversarial learning algorithm and
explicitly encodes learned features into deep transfer learn-
ing network for the model migration. To the best of our
knowledge, the DeepRisk is the first deep transfer learning
based approach to address the migratable traffic risk estimation
problem in intelligent transportation systems. We evaluate the
DeepRisk scheme on a real-world dataset from New York City.
The results show that our scheme significantly outperforms the
state-of-the-art baselines in terms of accurately estimating the
traffic risk of locations in a city.

II. RELATED WORK

A. Social Sensing

Social sensing has emerged as a new sensing paradigm in
networked sensing that uses humans as sensors to report the
states of the physical world [3], [14], [15]. This new sensing
paradigm is a motivated by the proliferation of potable devices
for individuals (e.g., smartphone), the ubiquitous wireless
communication technology (e.g, 4/5G), and the mass informa-
tion dissemination media (e.g., Twitter, Facebook) [16], [17].
Examples of social sensing applications include smart urban
environment and facility monitoring [4], disaster and emer-
gency response systems [18], edge computing systems [19],
and intelligent transportation systems [20]. This paper focuses
on the migratable traffic risk estimation problem by leveraging
the massive publicly available social sensing data on traffic.
Compare to traditional sensing paradigms that collect traffic

data from infrastructure-based sensors (e.g., speed sensors,
traffic cameras, loop detectors), social sensing provides a more
pervasive, scalable, and economic approach to the problem
studied in this paper.

B. Traffic Risk Estimation
A significant amount of efforts have been made towards

addressing the traffic risk estimation problem in data mining,
networked sensing, and intelligent transportation systems [6]–
[9]. For example, Yu et al. developed a support vector
machine based approach to analyze accident injury severity
using the crash reports and real-time traffic speed data [6].
Sun developed a dynamic Bayesian network based model
to predict the traffic accident risk using the data collected
from speed sensors deployed on urban expressways [7]. Yuan
et al. proposed a deep learning based model to predict the
probability of traffic accidents using long-term motor vehicle
crash data and traffic camera data [8]. Qin et al. developed
a large-scale data-driven framework for urban traffic sensing
using vehicle GPS and cellular signaling data [9]. However,
those approaches cannot be applied to our migratable traffic
risk estimation problem because they primarily rely on a
rich set of historic ground truth data on traffic accidents
or accurate traffic information collected from infrastructure-
based physical sensors in the studied area to build reliable
estimation/prediction models [21]. In contrast, we develop a
novel deep transfer learning approach to estimate the traffic
risk of locations in the areas where the ground truth traffic
accident data is not available.

C. Deep and Transfer Learning
Our work is also related to deep and transfer learning

techniques, which have been applied in areas such as rec-
ommendation systems, remote sensing, computer vision, and
Internet of Things (IoT) [22]–[25]. Glorot et al. proposed a
domain adaptation framework for large-scale sentiment classi-
fication using the stacked denoising auto-encoder [22]. Xie et
al. designed a transfer learning solution to identify complex
earth surface features from high-resolution satellite imagery
for poverty estimation [23]. Lu et al. developed a behavioural
biometrics based authentication framework for smartwatches
using deep recurrent neural network [24]. Bhattacharya et
al. proposed an off-line deep learning optimizing approach
to learn compact model representation for wearable comput-
ing [25]. To the best of our knowledge, the DeepRisk is
the first social sensing based deep transfer learning approach
to solving the migratable traffic risk estimation problem in
intelligent transportation systems.

III. PROBLEM DEFINITION

In this section, we formulate the migratable traffic risk
estimation problem using social sensing data. We first define
the terms that will be used in the problem statement and then
formally present our problem.

Definition 1: Source Area (S): We define a source area to
be an area (e.g., borough, district, city) where the ground truth
traffic accident reports are available for traffic risk estimation.



Definition 2: Target Area (T ): We define a target area to
be the studied area where the ground truth traffic accident
records are not available.

Definition 3: Sensing Cell (C): We divide both the source
and target areas into disjoint sensing cells (e.g., 60m × 60m
squares) where each cell represents a subarea of interest. In
particular, we define A and B to be the number of cells in the
source and target area, respectively. In particular, we denote cSa
as the ath sensing cell in the source area (a = 1, 2, · · · , A), and
cTb as the bth sensing cell in the target area (b = 1, 2, · · · , B).

Definition 4: Sensing Cycle: A sensing cycle is a period
of time (e.g., a week) where the estimation model identifies
the traffic risk in the target area. In particular, we define w
to be the wth sensing cycle and W to be the total number of
sensing cycles in the studied duration of the application.

Definition 5: Ground Truth Traffic Accident Records
(GT ): We define GT to be the ground truth traffic accident
record data, which is often published by the government au-
thorities (e.g., police department). In our problem, the ground
truth traffic accident records are only available in the source
area, which we refer to as GTS .

Definition 6: Social Sensing Data (SD): We define SD
to be the social sensing data (e.g., social media posts) on
traffic accidents. In particular, we denote social sensing data
collected from the source and target areas as SDS and SDT ,
respectively.

Definition 7: Traffic Risk Index (Y ): We define the traffic
risk index of a location as the traffic accident rate (i.e.,
number of accidents per sensing cycle) in that location. In
particular, we define Y S

w = {yS1,w, yS2,w, ..., ySA,w} and Y T
w =

{yT1,w, yT2,w, ..., yTB,w} as the traffic risk indexes for source and
target areas at sensing cycle w, respectively. ySa,w and yTb,w
represent the traffic risk indexes of cell cSa and cTb , respectively.
Finally, we define the ŷTb,w to be the estimated traffic risk
index for cTb in the target area.

The goal of the migratable traffic risk estimation problem is
to correctly estimate the real traffic risk index of the sensing
cells in the target area by “migrating” the traffic risk estimation
model learned from the source area. Using the definitions
above, our problem is formally defined as:

argmin
ŷT
b,w

(
1

W
·

W∑
w=1

1

B
·

B∑
b=1

abs(ŷTb,w − y
T
b,w) | SD

T , SDS , Y S)

(1)

where abs() is function to generate the absolute value of a
given number. Y S is the set of traffic risk indexes for all
sensing cells in the source area.

IV. SOLUTION

In this section, we present the DeepRisk scheme to address
the migratable traffic risk estimation problem formulated in the
previous section. We first present an overview of the DeepRisk
scheme and then discuss its components in detail. Finally, we
summarize the DeepRisk scheme with pseudocode.

A. Overview of the DeepRisk scheme

The overview of the DeepRisk scheme is shown in Figure 1.
It consists of three major components: i) Traffic Risk Feature
Extraction (TRFE); ii) Deep Transfer Network Construction
(DTNC); iii) Adversarial Deep Network Learning (ADNL).
First, the TRFE component extracts the traffic risk features
from the unstructured social sensing data in both source
and target areas. Second, the DTNC component constructs
a principled deep transfer learning network to project the
extracted traffic risk features from the target area to the source
area. Finally, the ADNL component learns the optimal instance
of the deep transfer learning network to make accurate traffic
risk estimation in the target area using a novel adversarial
learning algorithm.

Figure 1. Overview of DeepRisk Scheme

B. Traffic Risk Feature Extraction (TRFE)

In this subsection, we describe the TRFE component that
extracts the traffic accident related features (i.e., locations and
time of accidents) from the unstructured social sensing data
collected in both source and target areas for the migratable
traffic risk estimation.

The raw social sensing data (e.g., tweets) are usually un-
structured (e.g., text) and can not be directly used for traffic
risk estimation. For instance, human sensors often provide a
high-level description of the accident location instead of the
accurate GPS location (e.g., a tweet saying “Incident on #I278
EB at Hunts Point Avenue”). Therefore, the objective of TRFE
is to extract the traffic risk features (i.e., locations and time
of accidents) and represent the extracted features as feature
vectors. In particular, we characterize the traffic risk feature
extraction process as follows:

XS/T
c = {(αp, βp)|αp ∈ c,∀p ∈ SDS/T }

where (αp, βp) = F(p),∀c ∈ CS/T
(2)

where XS/T
c is the traffic risk feature vector to represent the

extracted traffic risk features in sensing cell c from either
source area or target area CS/T . In addition, we define XS

and XT to be the sets of traffic risk feature vectors in source
area and target area, respectively. p is a piece of social sensing
data (e.g., a tweet) collected from source area SDS or target
area SDT . αp and βp are location and time of the accident



reported in p. F is a feature extraction function that extracts
the traffic risk features from the raw social sensing data. In
particular, traffic accident locations αp can be extracted from
the social sensing data by examining the associated geo-tags
(e.g., “coordinates” field of a tweet 4) or analyzing the content
of social sensing data [20]. The accident time βp can be
extracted by checking the timestamp of the data sample (e.g.,
“created at” field of a tweet).

C. Deep Transfer Network Construction (DTNC)

In this subsection, we describe the DTNC component
(Figure 2) that migrates the risk estimation model from the
source to the target area through a principled deep transfer
learning network. The DTNC component takes the traffic risk
feature vectors generated by the TRFE component as inputs
and constructs a set of neural networks for the traffic risk
estimation in the target area.

We first define three types of neural networks that will be
used in our solution.

Figure 2. Deep Transfer Learning Network

Definition 8: Estimation Neural Network E: We define
E as the estimation neural network:

E :M→N (3)

whereM is the set of input features (e.g., traffic risk features)
and N is the estimation results (e.g., traffic risk index).

Definition 9: Transformation Neural Network F : We
define F as the transformation neural network:

F : m ∈ P(M)→ n ∈ P(N ) (4)

where P(M) and P(N ) are the distributions of M and N
defined above, respectively. In particular, the transformation
neural network F is able to map a data point m from
the distribution P(M) to a unique data point n from the
distribution P(N ).

Definition 10: Examination Neural Network G: We de-
fine G as the examination neural network:

G :

{
1 : m ∈ P(M)
0 : m /∈ P(M)

(5)

The network returns “1” (i.e., true) if m belongs to the
distribution P(M) and “0” (i.e., false) otherwise.

4https://developer.twitter.com/en/docs/tutorials/filtering-tweets-by-
location.html

In short, the estimation neural network is used to learn an
effective traffic risk estimation model in the source area. The
transformation and examination neural networks work together
to learn the migratable traffic risk estimation model for the
target area. We elaborate the above process below.

The first part of our deep transfer learning network is to
instantiate an estimation neural network for the traffic risk
estimation in the source area (i.e., E0) as follows:

E0 : XS → Y S (6)

where XS is the set of traffic risk feature vectors generated
by the TRFE component in the source area. Y S is the set of
traffic risk indexes (i.e., traffic accident rate) in the source
area, which can be obtained from the ground truth traffic
accident records GTS . The objective of E0 is to minimize the
difference between the estimated and real traffic risk indexes
in the source area as follows:

LE : argmin
E0

||E0(X
S)− Y S ||2 (7)

where LE is the objective for estimation network E0. E0(X
S)

and Y S are the estimated and real traffic risk indexes of the
source area, respectively. || · ||2 donates the L2-norm of a
given matrix. We develop an efficient adversarial deep network
learning scheme to learn the optimal instance (i.e., optimal
weight of each node in the network) of E0, which will be
discussed in the next subsection.

The input data to the learned estimation network E0 has
to share the same underlying distribution as the training data
(i.e., XS) to avoid the undesirable overfitting problem [26].
However, the discrepancy between the source and target area
naturally lead to different traffic risk distributions between the
two areas [12]. Please note that it is not feasible to directly
modify E0 (e.g., re-tuning the weights of the network, etc.)
to fit the traffic risk distributions of the target area due to the
complex and latent nature of the risk features as well as the
insufficient ground truth traffic accident records in the target
area [27]. Therefore, we transform the traffic risk features
from the target area (i.e., (XT )) to fit in with the traffic risk
feature distribution of the source area (i.e., P(XS)) using the
transformation networks:

F1 : xT ∈ P(XT )→ xS ∈ P(XS)

F2 : xS ∈ P(XS)→ xT ∈ P(XT )
(8)

where P(XT ) and P(XS) are the traffic risk feature dis-
tributions in target area and source area, respectively. In
particular, we define two transformation networks F1 and F2

to ensure the consistency of the transformation process (e.g.,
xT = F2(F1(x

T )), xS = F1(F2(x
S))) as follows:

LF : argmin
F1,F2

∑
xT∈P(XT )

(||F2(F1(x
T ))− xT ||1)

+
∑

xS∈P(XS)

(||F1(F2(x
S))− xS ||1)

(9)



where LF is the objective for transformation networks F1 and
F2. || · ||1 donates the L1-norm of a given matrix.

The above objective function ensures the one-to-one trans-
formation between the original and transformed feature vectors
(e.g., xT and F1(x

T )). However, the transformed feature
vector (e.g., F1(x

T )) has not been regularized to the desired
distribution (e.g., P(XS)). To regularize the transformed fea-
ture vectors, we introduce two examination neural networks
GS and GT for the traffic risk feature distributions in source
and target areas (i.e., P(XS) and P(XT )) as:

GS :

{
1 : x ∈ P(XS)
0 : x /∈ P(XS)

GT :

{
1 : x ∈ P(XT )
0 : x /∈ P(XT )

(10)

Consider a traffic risk feature vector xT and its trans-
formed feature vector F1(x

T ) generated by the transformation
network F1. The transformation network F1 is effective if
F1(x

T ) belongs to P(XS). In particular, the transformed
feature vector F1(x

T ) should be verified by the examination
network GS (i.e., returning 1). We update the objective for F1

and F2 by leveraging the examination networks as follows:

LF : argmin
F1,F2

∑
xT∈P(XT )

(||F2(F1(x
T ))− xT ||1)

+
∑

xS∈P(XS)

(||F1(F2(x
S))− xS ||1)

+
∑

xT∈P(XT )

||1−GS(F1(x
T ))||E

+
∑

xS∈P(XS)

||1−GT (F2(x
S))||E

(11)

where || · ||E donates the cross-entropy loss of a given ma-
trix [28]. LF is the final objective for transformation network
F1 and F2. The above process requires examination networks
to clearly i) identify imperfect transformed feature vectors
(e.g., F1(x

T )) that do not fit in with the desired distributions
(e.g., P(XS)); and ii) differentiate identified feature vectors
from the original ones (e.g., xS). Hence, we define the
objective for examination networks GS and GT as follows:

LG : argmin
GS ,GT

∑
xT∈P(XT )

||0−GS(F1(x
T ))||E

+
∑

xS∈P(XS)

||1−GS(x
S)||E

+
∑

xS∈P(XS)

||0−GT (F2(x
S))||E

+
∑

xT∈P(XT )

||1−GT (x
T )||E

(12)

where || · ||E donates the cross-entropy loss of a given matrix.

D. Adversarial Deep Network Learning (ADNL))

In this subsection, we describe the Adversarial Deep Net-
work Learning (ADNL) component. The goal of ADNL is to
obtain the optimal instances (e.g., optimal weights of nodes in

the network) of the neural networks (i.e., E0, F1, F2, GS , GT )
in DTNC component to make accurate traffic risk estimation
for the target area.

We formulate the problem of learning the optimal deep
transfer learning network as an adversarial learning problem.
In particular, we observe that the transformation neural net-
works (i.e, F1, F2) and examination neural networks (i.e,
GS , GT ) formulated in the DTNC component have opposite
objectives (i.e., LF in Equation 11 and LG in Equation 12).
On one hand, the transformation networks target at effective
transformations so the examination networks believe all trans-
formed feature vectors belong to the desired distributions. On
the other hand, the examination networks target at identifica-
tion of imperfect feature vectors generated by transformation
networks. To capture such conflicting objectives, we divide the
neural networks into two adversarial groups as follows:

LA : argmin
E0,F1,F2

(γE · LE + γF · LF )

LB : argmin
GS ,GT

(γG · LG)
(13)

where LA and LB represent the objectives for the two
adversarial groups, respectively. In particular, LA includes
the networks (E0, F1, F2) that aim to make effective feature
transformations. LB includes the networks (GS , GT ) that
aim to identify any imperfect transformed feature vectors
(e.g., F1(x

T )). γE , γF , γG are the weights for different neural
networks, which are usually set to be a small positive number
with the order of γF > γG > γE to ensure the consistency and
effectiveness of the feature transformation process [12]. Given
the above adversarial objective functions, we can alternatively
minimize LA and LB using gradient descent techniques (e.g.,
Adam optimization [29]) to obtain the optimal instances of all
neural networks, which ensure the effective feature transfor-
mation through F1 and accurate traffic risk estimation through
E0. Finally, we apply the optimal neural networks to estimate
the traffic risk indexes in the target area as follows:

xT → F ∗1 (x
T )→ E∗0 (F

∗
1 (x

T ))→ ŷT ,∀xT ∈ XT (14)

where E∗0 and F ∗1 are the optimal instances of E0 and F1,
respectively. In the above estimation, we first transform the
feature vector xT from the target area to fit in with the
distribution of the source area as the transformed feature vector
F ∗1 (x

T ). We then apply the estimation neural network E∗0 to
obtain the traffic risk estimation result E∗0 (F

∗
1 (x

T )) as the
estimated traffic risk index ŷT for the feature vector xT .

We summarize the DeepRisk scheme in Algorithm 1. The
inputs to the algorithm are the social sensing data collected
from both source and target areas (SDS , SDT ) and traffic risk
indexes in source area Y S . The output is the estimated traffic
accident rate for each sensing cell in target area ŷT .

5threshold is usually set to be a small value (i.e., less than 0.1) to ensure
the accuracy of the learned neural networks



Algorithm 1 Summary of the DeepRisk Scheme
1: initialize F1,F2,GS ,GT ,E0 (e.g., MLP, CNN)
2: set γE , γF , γG
3: extract XS and XT from SDS and SDT using TRFE component and

obtain Y S from GTS

4: calculate initial LE , LF , LG using Equation 7, Equation 11, Equation 12,
respectively

5: calculate initial LA and LB using Equation 13
6: set ∆LA

← +∞ and ∆LB
← +∞

7: while ∆LA
or ∆LB

≥ threshold5 do
8: optimize LA using Adam optimizer
9: calculate updated LE , LF using Equation 7, Equation 11 as L′E , L′F ,

respectively
10: calculate updated LA using Equation 13 as L′A
11: ∆LA

← |L′A − LA|
12: LE ← L′E , LF ← L′F ,LA ← L′A
13: optimize LB using Adam optimizer
14: calculate updated LG using Equation 12 as L′G
15: calculate updated LB using Equation 13 as L′B
16: ∆LB

← |L′B − LB |
17: LG ← L′G,LB ← L′B
18: end while
19: for each sensing cell in target area do
20: output ŷT with optimized neural network F ∗1 , E

∗
0 using Equation 14

21: end for

V. EVALUATION

In this section, we evaluate the performance of the DeepRisk
scheme using the real world traffic datasets collected from
New York City. We compare the performance of DeepRisk
with state-of-the-art traffic risk estimation baselines in the liter-
ature. The evaluation results show that DeepRisk significantly
outperforms the baselines in terms of the estimation accuracy.

A. Dataset

We study the migratable traffic risk estimation problem us-
ing the real world traffic datasets collected from four different
boroughs in New York City (i.e., Manhattan (Mn), Bronx
(Bx), Queens (Qs), and Brooklyn (Bn)). These boroughs are
observed to have different layouts, road conditions, traffic
volumes, and population density, which create a challenge sce-
nario for the DeepRisk scheme. We choose the four boroughs
in our evaluation because we can obtain the detailed ground
truth labels on traffic accidents in these boroughs as discussed
below. We use the ground truth labels in the target area for
the evaluation purpose only.

Twitter Traffic Report Dataset: We collected a dataset
by using the Twitter API 6 on traffic accidents as our social
sensing data. This dataset consists of 239,734 traffic-related
tweets from the four different boroughs (i.e., Manhattan,
Bronx, Queens, and Brooklyn) in New York City over the
time period from Jan. 1st, 2016 to Jun. 30th, 2018.

Motor Vehicle Accident Report Dataset: We use a dataset
published by New York City Police Department (NYPD) 7

to obtain the ground truth labels of traffic risk index in the
studied areas. This dataset consists of 568,051 reports of traffic
accidents that happened in the four major boroughs in New

6https://developer.twitter.com
7https://data.cityofnewyork.us/Public-Safety/NYPD-Motor-Vehicle-

Collisions/h9gi-nx95

York City between Jan. 1st, 2016 and June 30th, 2018. Each
report contains the accurate time and location of an accident.

B. Baselines

We choose several representative traffic risk estimation
schemes as the baselines in our evaluations. To ensure fairness,
the inputs to the baselines and DeepRisk are the same (i.e.,
social sensing data from both source and target areas and the
accident reports from the source area).
• Random Based Estimation (RAND): it estimates the

traffic risk index of a sensing cell by randomly selecting
a number between 0 and the highest traffic accident rate
in our dataset.

• Linear Regression Based Estimation (LR): it trains
a linear regression model to minimize the difference
between the true and estimated traffic risk indexes
using ordinary least squares (OLS) and makes estimation
accordingly [30].

• Bayesian Based Estimation (ARD): it uses the Bayesian
automatic relevance determination (ARD) to fit the
weights of the estimation model to minimize the dif-
ference between the true and estimated traffic risk in-
dexes and makes the estimation based on the learned
weights [31].

• Lasso Based Estimation (LA): it learns the weights of
the LA model and adds a Lasso regularizer to enforce the
robustness of the learned model and makes the estimation
based on the learned weights [32].

• Multi-layer perceptron Based Estimation (MLP): it
trains a multi-layer neural network model to learn a non-
linear function approximator to minimize the difference
between the true and estimated traffic risk indexes and
makes the estimation based on the learned non-linear
function approximator [33].

C. Evaluation Metric

In our evaluation, we define the following metric to evaluate
the performance of all compared schemes.
• Mean Absolute Error (MAE): the average estimation

error for all sensing cells across all sensing cycles.
Specifically. We define:

MAE =
1

W
·

W∑
w=1

1

B
·

B∑
b=1

abs(ŷTb,w − y
T
b,w) (15)

where B is the number of the sensing cells in the target area
and W is number of the sensing cycles.

D. Evaluation Results

1) Estimation Accuracy: In this subsection, we present the
results of our DeepRisk scheme and all compared baselines
on the real world datasets discussed above. We study the
performance of all schemes by varying the combinations
of source and target areas. Specifically, in each set of the
experiment, we set the source area to be one of the four
boroughs in NYC and set each of the remaining three boroughs
as the target area. In our experiment, we set the length of the



sensing cycle to be one week by considering the frequency
of the accidents in the studied area. In our experiment, we
focus on the sensing cells with more than 100 accidents over
the studied time period, which translates to more than one
accident per sensing cycle. In addition, we set the structures of
the neural networks in our evaluation for network F1, F2, E0

to be 10 layers with 64 nodes in each layer for complex multi-
variable mapping tasks. We set GS , GT to be 2 layers with 3
nodes in each layer for the simple binary classification tasks.
We also set the activation function in each network to be ReLU
function for effective transformation between layers.

The results are shown in Table I to Table IV. In Table I,
we observe that the performance gains achieved by DeepRisk
scheme compared to the best performed baseline are 27.6%,
10.7%, 12.4% respectively on three different target areas. Such
performance gains of DeepRisk are achieved by judiciously
constructing a principled deep transfer network to effectively
migrate the risk estimation model from the source area to
the target area. In particular, the DeepRisk scheme explicitly
transforms the traffic risk features from the target area to fit
in with the feature distribution of source area and obtains
the optimal risk estimation function through an adversarial
deep network learning process. In addition, we continue to
observe that our DeepRisk scheme to consistently outperform
the compared baselines in Table II to Table IV when we
shuffle the source and target area combinations. The consis-
tent performance improvements of DeepRisk demonstrate its
robustness and effectiveness across different source and target
area settings.

Table I
PERFORMANCE COMPARISONS (MAE) ON DIFFERENT SOURCE AND

TARGET AREA SETTINGS (SOURCE = BRONX)

Source and Target Area Settings

Algorithm Bx →Qs Bx → Mn Bx → Bn

RAND 8.108 8.162 7.963

LR 7.430 3.166 4.667
ARD 1.467 1.161 1.133
LA 2.039 1.478 1.287

MLP 1.845 1.526 1.253

DeepRisk 1.062 1.036 0.992

Table II
PERFORMANCE COMPARISONS (MAE) ON DIFFERENT SOURCE AND

TARGET AREA SETTINGS (SOURCE = MANHATTAN)

Source and Target Area Settings

Algorithm Mn → Bx Mn → Qs Mn → Bn

RAND 8.191 8.120 8.494

LR 7.664 10.096 1.196
ARD 1.249 1.857 1.064
LA 2.097 2.901 1.076

MLP 1.438 2.284 1.074

DeepRisk 1.118 1.019 0.966

Table III
PERFORMANCE COMPARISONS (MAE) ON DIFFERENT SOURCE AND

TARGET AREA SETTINGS (SOURCE = QUEENS)

Source and Target Area Settings

Algorithm Qs → Bx Qs → Mn Qs → Bn

RAND 8.633 8.350 7.689

LR 9.495 10.022 2.751
ARD 1.189 1.048 1.040
LA 2.945 1.215 1.263

MLP 1.215 1.113 1.155

DeepRisk 1.110 1.029 0.949

Table IV
PERFORMANCE COMPARISONS (MAE) ON DIFFERENT SOURCE AND

TARGET AREA SETTINGS (SOURCE = BROOKLYN)

Source and Target Area Settings

Algorithm Bn → Qs Bn → Mn Bn → Bx

RAND 8.687 7.349 8.185

LR 6.434 3.664 4.805
ARD 2.197 1.140 1.842
LA 2.537 1.343 2.065

MLP 2.956 1.100 1.465

DeepRisk 1.016 0.991 1.124

2) Model Robustness: In this subsection, we study the
robustness of the DeepRisk scheme by varying the values
of the parameters in our model. One key parameter in our
DeepRisk scheme is the weighting parameter γE (defined in
Definition 13). This parameter controls the trade-off between
the convergence rate and degree of the estimation neural
network E0 (defined in Equation 6) [34]. The results are
shown in Figure 3. We observe that performance (estimation
accuracy) of the DeepRisk is relatively stable on different
source and target area settings when the value of γE changes.

(a) Source = Bronx (b) Source = Manhattan

(c) Source = Queens (d) Source = Brooklyn

Figure 3. Robustness of DeepRisk Scheme



VI. CONCLUSION

In this paper, we develop a DeepRisk scheme to solve
the migratable traffic risk estimation problem in intelligent
transportation system using social sensing. In particular, we
develop a principled deep transfer learning network to effec-
tively migrate the risk estimation model from the source area
to the target area. We also design a novel adversarial learning
algorithm to learn the traffic risk related features for effective
risk estimation model migration. The evaluation results on the
real world case study demonstrate that the DeepRisk achieves
significant performance gains compared to the state-of-the-art
baselines in accurately estimating the traffic risk of locations
in a city.
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