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Abstract—This paper overviews the state of the art, research
challenges, and future opportunities in an emerging research
direction: Social Sensing based Edge Computing (SSEC). Social
sensing has emerged as a new sensing application paradigm
where measurements about the physical world are collected from
humans or from devices on their behalf. The advent of edge
computing pushes the frontier of computation, service, and data
along the cloud-to-things continuum. The merging of these two
technical trends generates a set of new research challenges that
need to be addressed. In this paper, we first define the new
SSEC paradigm that is motivated by a few underlying technology
trends. We then present a few representative real-world case
studies of SSEC applications and several key research challenges
that exist in those applications. Finally, we envision a few exciting
research directions in future SSEC. We hope this paper will
stimulate discussions of this emerging research direction in the
community.

Index Terms—Social Sensing, Edge Computing, Internet of
Things, Smart Cities

I. INTRODUCTION

Social sensing has become a new sensing paradigm for

collecting real-time measurements about the physical world

from humans or mobile devices on their behalf [1]–[5].

Examples of social sensing applications include urban traffic

monitoring using mobile apps [6], obtaining real-time situation

awareness in the aftermath of a disaster using self-reported

observations from citizens [7], and smart healthcare moni-

toring using wearable sensors [8]. A key limitation in the

current social sensing solution space is that data processing

and analytic tasks are often done on a “backend” system

(e.g., on dedicated servers or commercial clouds) [2], [9]–

[11]. Unfortunately, this scheme ignores the rich processing

capability of increasingly powerful edge devices owned by

individuals (e.g., mobile phones, tablets, smart wearables,

and the Internet of Things). For example, the emerging AI

accelerators (commonly called “AI Chip”) on smartphones

are capable of finishing complex deep learning tasks that are

traditionally done on large server racks [12]. These ubiquitous,

powerful, and individually owned devices are referred to as

“edge devices” in this paper.

The advent of edge computing pushes the frontier of com-

putation, service, and data along the cloud-to-things contin-

uum to the edge of the network [13]–[15], and brings new

opportunities for social sensing applications. By combining

social sensing with edge computing, the privately owned

edge devices not only serve as pervasive sensors, but also

form a federation of computational nodes where the data

collected from them can be processed and consumed at the

edge [16]–[19]. We refer to the marriage of social sensing

and edge computing as Social Sensing based Edge Computing

paradigm, or SSEC for short. We illustrate a typical SSEC

system architecture in Figure 1. The SSEC system consists

of an edge layer, an edge server layer, and a service layer.

In the edge layer, privately owned edge devices (e.g., mobile

phones, IoT devices, drones) are leveraged to perform the

sensing, storage, networking, and computational tasks near the

source of the data. The edge server layer1 (often comprised of

local servers, cloudlets, smart routers, or gateways) provides

an intermediate layer between the edge devices and the cloud.

The edge server layer also provides additional data storage

and computing power in locations of close proximity to the

edge devices [20], [21]. The service layer (often built into a

back-end cloud) provides a global service interface to all users

interested in the applications/services.

The advantages of the SSEC paradigm are multi-fold: 1)

social sensing applications can process the sensing data right

at the edge devices where the data has been collected, which

could significantly reduce the communication costs (e.g., band-

width) and improve the Quality of Service (QoS) (e.g., delay)

of the applications; 2) social sensors (e.g., owner of the edge

devices) can obtain payoffs/rewards by leveraging the idle

resources of their devices to execute the computational tasks

for the application; 3) the SSEC architecture does not suffer

from a single point of failure and alleviates the performance

bottleneck of the “back-end” solutions.

The SSEC paradigm also introduces many research chal-

lenges. In particular, SSEC introduces a set of new chal-

lenges to real-time resource management by supporting delay-

sensitive social sensing applications in edge computing sys-

tems. For example, the edge devices (often owned by end

users) in SSEC are generally opportunistic and selfish (e.g.,

they are not committed to or interested in executing the

sensing tasks or sharing their private device status unless

incentives/payoffs are provided) [22], [23]. This assumption

is unique in SSEC and contrasts sharply with the assump-

tion made in the “backend” based solutions in traditional

distributed or cloud-based systems where all computational

1The edge server is also commonly referred to as a fog node in fog
computing literature. We use these two terms interchangeably in this paper.



Figure 1: Social Sensing based Edge Computing

devices are fully committed and information is shared among

all devices [10]. Furthermore, the SSEC paradigm calls for

close collaboration among end users, infrastructure owners,

and application managers. Due to the lack of natural trust

among them, none of these parties can be fully trusted as

they might be interested in performing privacy and security

attacks.

The rest of the paper is organized as follows. In Section II,

we present the definition, enabling technologies, and impact

of the SSEC paradigm. In Section III, we discuss several im-

portant applications and case studies of SSEC. In Section IV,

we discuss the unique research challenges and opportunities

in SSEC. We outline the future road map of this direction

in Section V. Finally, we conclude our vision of SSEC in

Section VI.

II. SOCIAL SENSING EDGE COMPUTING PARADIGM

IoT devices owned by individuals are increasingly equipped

with powerful computing and diverse sensing capabilities. The

sensing data generated by these devices provides an alternative

lens into physical phenomena as compared to traditional

sensor networks [1], [24]–[26]. Due to the sheer volume of

data generated by these devices, it makes sense to explore

opportunities for processing the data at the edge of the network

[10]. Previous work in edge computing leverage cloudlets [20],

micro datacenters [27], and fog computing [28] to address the

deficiency of cloud computing when the data is produced at

the edge of the network. However, these solutions fail to take

advantage of privately owned edge devices as SSEC does, and

they instead rely on infrastructure which must be provisioned

ahead of time. In this section, we formally define social

sensing based edge computing (SSEC) and discuss how SSEC

is complementary to existing edge computing frameworks.

A. What is SSEC?

DEFINITION 1. Social Sensing based Edge Computing

(SSEC): an application paradigm that uses humans and de-

vices on their behalf to sense, process, and analyze data

collected about the physical world.

In this definition, the devices owned by individuals not

only collect data about the physical world, but also actively

participate in the application by performing computations and

analytic tasks. These privately owned edge devices can be

quite heterogeneous, ranging from a GPS sensor, Raspberry

Pi, or robot, to a powerful multi-processor server.

SSEC has two important features: 1) it is human-centric;

and 2) it has the flexibility to support various applications with

different system architectures. We elaborate on these features

below.

1) Human-centric Nature of SSEC: SSEC is human-centric.

On one hand, the owners of the edge devices are freelance

users and their unique concerns must be carefully considered

in the SSEC paradigm. These human concerns includes privacy

and security, compliance and churn, and incentives, which

will be elaborated in Section IV. On the other hand, we

envision that not only can devices engage in the sensing and

computational tasks, but people can directly participate as

well. In fact, many social sensing applications require input

directly from a human, such as reporting traffic congestion

[29], or taking videos of an emergency event [18]. Also,

SSEC considers the potential of people serving as “social edge

nodes” where they directly make inferences using the data.

For example, consider an abnormal event detection scenario

where edge devices are used to collect video data and infer

abnormal events such as an intrusion [30]. Instead of using

machine learning algorithms to perform such data analytic

tasks, humans can directly identify the abnormal events from

the video with high accuracy [31]. We explore the possibility

of leveraging humans as computing nodes in a pioneer work

[7]. This unique feature of SSEC where human input and

intelligence complements the existing edge/cloud computing

paradigm promises to enable new applications that would not

be possible without it.

2) Flexibility of SSEC to Support System Variations:

Like traditional edge computing systems that come in many

different architectures [32], SSEC has diverse system vari-

ations as well (Figure 2). While SSEC focuses more on

the privately owned edge devices, it by no means intends

to drastically replace the existing cloud or edge computing

paradigm by diminishing the existing infrastructure such as

cloud servers, large data centers, cloudlets, or near-edge micro

data centers. In fact, SSEC fully takes advantage of existing

system infrastructures. The choice of the system architecture



is application specific. We summarize a few representative

architectures below.

Figure 2: Example SSEC System Variations

Hierarchical: A typical cloud-edge hierarchical SSEC sys-

tem architecture is shown in Figure 2. It follows the hierar-

chical structure where a remote cloud server, which is often

powerful and has a massive storage capacity, manages the

application and provides a global interface to the users. The

application governs a set of spatially distributed edge clusters,

where an edge cluster consists of a local edge server (e.g., a

micro data center or a Road-Side-Unit) and the nearby edge

devices that connect to it. In [33], [34], typical edge clusters

are illustrated, including a set of devices in a coffee shop

connected to a small in-house server owned by the shop; a set

of vehicles connected to a Road-side-Unit (RSU) on the same

street; and a set of mobile phones connected to the nearest base

station. The key characteristic of this hierarchical structure is

that the data flow is static: edge devices process the data locally

and offload further computational tasks to the edge servers, and

edge servers further process the data and send the results to

the cloud server for data aggregation tasks and storage.

Collaborative Edge: In a collaborative edge architecture,

edge devices in close proximity self-organize into a comput-

ing cluster and provide peer-to-peer services such as con-

tent delivery and computation offloading. This architecture is

particularly suitable for application scenarios where edge or

cloud servers are not readily available, or to avoid periodic

costs by using these infrastructures. Consider a crowd video

sharing application example where a set of spectators at a

sporting event (e.g., a soccer game) can take videos of the

highlights of the game and can stream them to people in the

audience who missed the play or who sit in a undesirable

locations. To improve performance for devices with poor

network connections, the system can encode the video streams

to a lower bitrate. In such a scenario, a remote cloud can

introduce significant delay for video sharing and local edge

servers may not be available (the servers/smart gateways at the

stadium may not be accessible by the audience). Therefore,

in the collaborative edge architecture, privately owned edge

devices perform these typically server-side roles.

Hybrid: A hybrid system architecture is a combination

of both a hierarchical and collaborative edge, in which self-

organized edge devices are connected to the available infras-

tructure (i.e., edge servers and the cloud). This infrastructure is

ideal for scenarios where self-organized edge devices cannot

satisfy QoS requirements, so readily available edge servers

and the cloud are leveraged to boost performance. Consider

a disaster response application where edge devices collabo-

ratively report damages during a disaster, often by executing

image analysis and machine learning algorithms to classify

damage severity [7]. A computationally weak edge device such

as a video camera can collect image data of the affected area

and offload the damage assessment task to a powerful edge

device nearby via Bluetooth. The assessment result is further

reported to all nearby edge devices in the form of alerts. In the

case where edge devices are under-performing due to lack of

high-end processors, the collaborative edge can offload tasks

to nearby edge servers, such as base stations, or cloud servers

for further processing.

B. Why We Need SSEC

Social Sensing based Edge Computing (SSEC) is motivated

by a few key technical trends: i) the IoT devices owned by

individuals are becoming increasingly powerful and some of

them even have similar computing power as the dedicated

servers in traditional edge computing systems [18], [35].

Therefore, it becomes a growing trend to push the com-

putation to the edge devices rather than dedicated remote

servers or edge servers [33]; ii) the popularity of mobile

payments provides a more convenient way for individuals to

receive incentives by contributing the spare resources on their

IoT devices for accomplishing social sensing tasks [36]. We

summarize a few advantages of SSEC below.

1) Coverage and Availability: One of SSEC’s main advan-

tages is its coverage and the availability of edge devices. There

are billions of privately owned edge devices worldwide that

can collect and process data at a global scale. This natural

mobile network is clearly advantageous in terms of coverage

as compared to static infrastructure such as data centers or

surveillance cameras. Furthermore, SSEC provides mobility

as the sensing and computing resources move geographically

with their users. This makes SSEC ideal for people-centric

sensing and computing tasks as the availability of resources is

closely correlated with the prevalence of noteworthy events.

2) Delay Reduction: Social sensing applications can pro-

cess the sensing data on the edge devices where the data has

been collected or on devices in close proximity, which could

significantly reduce the communication costs (e.g., bandwidth)

and improve the Quality of Service (QoS) (e.g., delay) of the

applications. This makes SSEC ideal for real-time or time-

sensitive applications.

3) Utilization: SSEC fully leverages the sensing and com-

puting power of the edge devices. Compared to traditional

edge computing frameworks that offload computational tasks

to edge servers or cloud servers, SSEC envisions that tasks can

be executed on smart devices owned by individuals as well. By

pushing the tasks to the edge, the SSEC architecture removes

the single point of failure and alleviates the performance

bottleneck of the “back-end” solution. This enables SSEC to

avoid high deployment costs for sensing tasks, and to save

money on the back-end infrastructure.



4) Reward Earnings: In SSEC, participants can obtain

rewards by contributing the idle resources of their devices to

execute computing tasks for the SSEC application. Similar to

how unused compute cycles are sold in cloud environments,

this creates a new market where the idle resources of edge

devices can now be fully utilized.

III. REAL-WORLD APPLICATIONS

In this section, we discuss a few representative SSEC

applications in real world scenarios.

A. Disaster and Emergency Response

An important application of SSEC is to provide real-time

situation awareness during disaster and emergency events (e.g.,

forest fire, robbery, terrorist attacks) [37], [38]. During such

events, human sensors (e.g., citizens, first responders, news

reporters) often spontaneously report a massive amount of

sensing information that describes the unfolding of the event.

SSEC provides a suitable architecture for this category of

applications: 1) the edge devices, with close proximity to the

human sensors, can collect and extract useful features about

the event without sending all data streams back to the cloud;

2) the edge server layer in SSEC can gather processed data

and exacted features from edge devices to provide real-time

event updates for local citizens; 3) the cloud server aggregates

all information collected and provides it to relevant agencies

and/or the general public. Figure 3 illustrates a scenario where

people use mobile phones and cameras to provide first-hand

footage of a terrorist attack at a shopping center. These data

can be helpful in tracking a suspect’s escape path. The edge

server layer provides time-critical alerts for potential threats

and offers safety recommendations.

Figure 3: Disaster and Emergency Response Application

B. Collaborative Traffic Monitoring

Collaborative traffic monitoring in social sensing aims at

collecting timely information about traffic conditions (e.g.,

congestion, accidents, and events) of an area of interest (e.g.,

a city). Such applications are useful for many transportation

services such as route planning, traffic management, and fuel

efficient navigation [34]. Traditionally, traffic monitoring has

been performed by analyzing data from statically installed traf-

fic cameras, which suffers from poor coverage [39]. Moreover,

the data generated by these traffic cameras were processed

at a remote cloud server, which introduces significant delay

and bandwidth costs. SSEC can address this problem by fully

leveraging social sensing and the edge devices owned by

people. In particular, the personally owned sensing devices

on vehicles (e.g., cameras, accelerometers, GPS sensors) offer

opportunities to collect a large amount of traffic data in real

time. For example, a typical traffic monitoring application

can task a set of drivers to use their dashboard cameras

to record traffic in front of their vehicles. The processed

data (e.g., extracted features) are offloaded to nearby edge

servers (i.e., RSU) for further analysis of traffic conditions.

Additionally, human sensors are also capable of reporting

high-level descriptions of the traffic context using their smart

phones. An example of such a social sensing application is

Waze2 where drivers collectively report their observations of

accidents, road hazards, and traffic jams in real-time. In Figure

4, pedestrians and drivers collaboratively contribute traffic data

using their edge devices. The edge server infers the traffic

conditions of local streets from the social sensing data and

sends accident alerts to the drivers. Transportation agencies

can also query the cloud for the road conditions and accidents

in their regions of jurisdiction and prioritize accident response,

road repair, or traffic control accordingly.

Figure 4: Collaborative Traffic Monitoring Application

C. Crowd Abnormal Event Detection

The goal of crowd abnormal event detection in social

sensing is to generate alerts for abnormal events from data

contributed by human sensors and their portable devices

(e.g., mobile phones). Traditional abnormal event detection

solutions largely depend on video data collected from installed

surveillance cameras and utilize image processing techniques

to identify these events [40], [41]. Those solutions fail in

situations where installed cameras are not available (e.g.,

due to deployment costs). The prevalence of camera-enabled

portable devices has enabled the collection of geo-tagged

pictures, videos, and user-reported textual data through social

sensing applications. Such multi-modal data can be exploited

for enhanced situation awareness during abnormal activities

(e.g., providing insights for investigating the severity and

2https://www.waze.com/



causes of events). For example, during a soccer game, events

such as sudden appearance of unexpected object or malicious

behavior of people (e.g., throwing a signal flare into the field)

can pose great threats to the safety of players and interrupt

the normal course of the game (Figure 5). In our SSEC

framework, the audience (as human sensors) can contribute

videos, images, and texts to report their observations about

the abnormal events. Upon detection of the abnormal events

during the game, the cloud-hosted service will send alerts to

the fans and the police department for an emergency response.

Figure 5: Crowd Abnormal Event Detection Application

D. Plate Recognition

The plate recognition application (Figure 6) was first in-

troduced in an effort to leverage private vehicles to collabora-

tively track down suspects of AMBER alerts [42]. In this appli-

cation, vehicles equipped with dash cameras form a city-wide

video surveillance network that tracks moving vehicles using

the automatic license plate recognition (ALPR) technique. This

system can be used to effectively track down criminal suspects

who are on the run in vehicles. It complements existing vehicle

searching processes that heavily rely on reports from witnesses

who might miss alerts and cannot search enough areas of

city [43]. Collecting surveillance video footage can expand

coverage. However, analyzing huge amounts of video data

in the cloud leads to unreasonable data transmission costs

and high response latency. SSEC can significantly reduce the

cost of data transmission and response latency by offloading

the data to nearby RSUs for real-time processing. SSEC also

pushes local processing to be done on these private vehicles to

extract features from the raw images and send the processed

data to the RSUs instead. This is because the video data

collected from the vehicles can also reveal private information

of the drivers (e.g., residence location) or the faces of the

citizens. Upon detecting the suspect’s vehicle, the cloud-

hosted service will send alerts to the police department for

an immediate response.

E. Crowd Video Sharing

The crowd video sharing application (Figure 7) uses self-

organized edge devices to perform peer-to-peer video content

Figure 6: Plate Recognition Application

delivery. This application is most suitable for events where

people take interesting videos and want to share it with one

another. For example, if a spectator at a soccer match has a

good view of some action, then other spectators in less favor-

able locations may desire to view the footage from the better

perspective. In order to facilitate this application the system

must 1) employ the participating edge computing resources

to avoid bottlenecks as the system scales, and 2) perform

video encoding so that devices with poor network connections

can be sent smaller video files, thus avoiding network delays.

This problem can be solved using SSEC by coordinating edge

devices to perform computation and communication tasks,

thus providing a source of compute power and bandwidth

which scales with the number of participating devices, i.e.,

demand. A bottom-up game theoretic decision making process

optimizes the encoding and transmission of the videos in order

to minimize delay in the system [44].

Figure 7: Crowd Video Sharing Application

IV. RESEARCH CHALLENGES AND OPPORTUNITIES

The fusion of social sensing and edge computing pushes

the frontier of sensing, computation, and service to the edge

of the network where social sensing occurs. However, utilizing

edge devices in the context of social sensing introduces a set

of fundamental challenges that are yet to be fully addressed.

In this section, we discuss a few critical research challenges

and opportunities in SSEC.

A. Resource Management with Rational Edge

In SSEC, the edge devices are usually owned by end users

rather than application providers. Due to the rational nature



of device owners, edge devices and applications often have

inconsistent or even conflicting objectives [16]. We refer to

this unique feature of SSEC as “rational edge”. Due to the

rational edge feature, two important issues prevent existing

resource managements schemes from being applied to SSEC,

namely competing objectives and asymmetric information.

1) Competing objectives: From the application’s perspec-

tive, it is important to ensure that the edge devices finish

the allocated social sensing tasks in a timely fashion to meet

the Quality of Service (QoS) requirements (e.g., end-to-end

delays). In contrast, device owners are often less concerned

about the QoS of the applications but are instead concerned

about their costs in running the computational tasks allocated

by the applications (e.g., the device’s current utilization,

energy consumption, memory usage). Thus, they are often

unwilling to execute the allocated tasks until sufficient in-

centives are provided [22]. This is in sharp contrast with

traditional distributed computing systems where computational

resources are fully cooperative and directly controlled by the

application. The mismatch in objectives held by the end users

and the application must be carefully addressed by developing

a set of new computation allocation models that respect such

discrepancies between the two parties.

2) Asymmetric Information: Another critical challenge in

SSEC is that the application server and edge devices usu-

ally have different degrees of information, i.e., “asymmetric

information”. Such asymmetric information makes resource

management in social sensing based edge computing systems

particularly challenging [16]. The asymmetric information

challenge can be viewed from two aspects. On the server

side, the application normally has detailed information about

the tasks (e.g., the dependencies and criticality of the tasks).

This information is important in understanding how tasks are

related to the QoS requirements imposed by the social sensing

application (e.g., which tasks are more important and should

be prioritized; which tasks should have a tighter deadline).

In contrast, the edge devices are often less concerned about

the details of the tasks and the servers’ QoS requirements

but more interested in their own device status (e.g., CPU

utilization, energy consumption, memory usage). Moreover,

an edge device may not share its status information with the

server or other edge devices in the system due to various

concerns (e.g., privacy, energy, bandwidth). This leads to insuf-

ficient information for the server to make optimal computation

allocation decisions.

B. Constrained Cooperativeness

In SSEC, edge devices are assumed to be only partially co-

operative in finishing their computational tasks due to the ratio-

nal or selfish nature of end users. This challenge is referred to

as “Constrained Cooperativeness”. Previous studies showed

that collaboration among computation nodes can significantly

improve efficiency of resource utilization in distributed sys-

tems [45]. Such collaboration between edge devices in social

sensing applications is essential to achieve optimized scala-

bility and efficiency in the SSEC system. For example, the

execution time of a set of tasks can be significantly reduced if

those tasks are allocated to a group of edge devices that run

the tasks in parallel and finish them collaboratively. Consider

an abnormal event detection application where edge devices

(e.g., smartphones, dash cameras) are tasked to take videos

or pictures of their surroundings to detect abnormal activities.

An edge device may not be equipped with a camera and thus

is incapable of completing the allocated tasks on its own. On

the other hand, if it has strong computing power, then it can

serve as a “local computation hub” for nearby lower-end edge

devices that do have cameras. However, collaboration among

edge devices is especially challenging because: i) edge devices

are rational actors who are unwilling to collaborate with others

unless sufficient incentives are provided; ii) various constraints

may prohibit collaboration among edge devices (e.g., latency

constraints imposed by the physical distance between devices

or trust constraints imposed by the trust between devices);

iii) collaboration requires explicit consideration of the task

dependencies of the application.

C. Pronounced Heterogeneity

The heterogeneity in SSEC is often more pronounced than

in regular edge computing systems. In particular, the edge

devices in SSEC often have diversified computing power,

runtime environments, network interfaces, and architectures,

making it difficult to orchestrate these devices to collabora-

tively accomplish the sensing and computational tasks. The

heterogeneity problem in SSEC is particularly challenging

because it is not possible for the application to cherry-pick

the devices in a fully controlled manner given the fact the

devices are owned by individuals [46]. In order to tame

the heterogeneity of edge devices in SSEC, several critical

research tasks are involved.

1) Runtime Abstraction: A critical issue in heterogeneous

SSEC is that the devices have diverse runtime environments

that may not support the social sensing tasks to be processed.

For example, a device may have an incompatible operating

system or lack the necessary dependencies to execute a social

sensing algorithm (e.g., a deep learning algorithm cannot run

on a device without necessary libraries such as Tensorflow

or CUDA [47]). Containerization techniques such as Docker

[48] can abstract away some hardware details of the devices

and provides a virtual environment that offers a lightweight,

portable and high-performance sandbox to host various appli-

cations. In particular, the social sensing application developers

can “wrap” all necessary dependencies and the OS itself into

a Docker container for each social sensing application. Such

runtime abstractions can allow the edge devices in SSEC to

provide the same interface to the social sensing application

developers and offers them the “write once and run anywhere”

feature despite the heterogeneity of SSEC devices.

2) Hardware Abstraction: Hardware abstraction targets

at abstracting away the details of heterogeneous hardware

specifications of the edge devices for the ease of resource

management in SSEC. A possible solution was proposed in

HeteroEdge [17], where the hardware capabilities of a device



can be represented as a set of “workers”. HeteroEdge considers

three types of workers that are essential for finishing social

sensing tasks in SSEC - CPU, GPU, and Sensor workers. Each

worker is associated with a capability descriptor in terms of the

estimated worst case execution time (WCET) for processing

social sensing tasks. The device owners can specify which

workers are available to the SSEC application. HeteroEdge

follows three important design principles in hardware abstrac-

tion in SSEC: i) the set of heterogeneous edge devices should

form a unified homogeneous resource pool for the social

sensing application; ii) the device owners should be able to

control which resources they would like to provide for an

application; iii) the edge devices can easily keep track of their

own dynamic status and provide necessary context information

for the runtime decision and optimization in SSEC.

3) Networking Abstraction: The privately owned edge de-

vices in SSEC can have very heterogeneous network inter-

faces (e.g., Bluetooth, WiFi, Zigbee) and it is essential to

abstract away the networking details to allow developers to

deploy SSEC applications without worrying about the specific

network interface and protocol. A promising technique to

accomplish this task is Software Defined Networking (SDN)

[49]. SDN can orchestrate the network, the services, and

the devices by hiding the complexities of this heterogeneous

network environment from the end users. It provides APIs that

can simplify the management of the network, define network

flows, and facilitate virtualization within the network.

We found existing resource management work in edge com-

puting cannot sufficiently handle the pronounced heterogeneity

in SSEC. A middleware that jointly addresses the three levels

of abstraction above for SSEC has yet to be developed.

D. Robustness against Churn and Dynamic Context

In SSEC, edge devices are most often privately owned

and managed, and therefore suffer from churn [21], causing

inconsistent availability by devices in edge computing. The

inconsistency of edge device availability is aggravated since

devices routinely kill tasks for power savings, or are oppor-

tunistically contributing compute power and then must stop in

order to service their primary purpose [50]. Furthermore, in

the case of mobile computing systems, a main criterion in the

eligibility of a device to perform a task is the location of that

device. Should the device move, then it may become unable to

serve its function and must be replaced by a device in a more

favorable location. To solve this problem in a way that is both

scalable and reliable, we introduce buffering into multi-stage

streaming applications. In such systems, tasks are broken into

multiple stages where different devices perform an operation

at each stage of a computational pipeline. If a device along

the pipeline unexpectedly quits and must be replaced, then

the replacement can be “filled in” by the the devices adjacent

to it in the pipeline. Furthermore, this pipeline design lends

itself to taking fine-grained advantage of heterogeneous edge

computing hardware since each stage can be matched to a

specialized computing platform.

Another challenging issue in the SSEC system is that

edge devices have volatile statuses and their willingness to

participate in SSEC applications may change dynamically over

time. We refer to this challenge as dynamic context. Con-

sider an environment sensing application where edge devices

(e.g., mobile phones) are used to collectively monitor the air

pollution of a city. Each edge device is tasked to monitor a

particular area. An edge device (or its owner) may change

the compliance of task execution due to i) changes in the

battery status of the device, or ii) changes in the physical

location of the device with respect to the monitored location.

Failure to capture such dynamics may lead to significantly

suboptimal resource allocation where the costs of edge devices

to complete a task are prohibitively high.

E. Privacy and Security

SSEC entails potential privacy risks to owners of edge de-

vices in social sensing applications. During the data collection

phase, the data collected from edge devices can potentially

reveal end users’ private information. For example, in the

plate recognition application, the image captured by an edge

device may contain street information, potentially disclosing

user residence or mobility patterns. Similarly, during the

resource management phase it is of the application’s interest

to obtain better knowledge on the status of each edge device

to maximize the task allocation efficiency. However, the edge

devices may not be willing to share such status information

due to their privacy configurations. Existing privacy preserving

techniques, such as anonymity techniques, can effectively

protect the identities of edge devices from curious entities. But

such techniques also prevent the application from identifying

the contributors of the computational tasks, thereby preventing

the server from distributing incentives through conventional

means [34]. Though privacy-aware SSEC systems have been

proposed [19], work still must be done to ensure that both the

privacy expectations from end users and the QoS requirements

from the applications are met.

Security in SSEC is an important concern, both for the

benefit of users participating in the application and for the

application itself so that the services rendered are not sabo-

taged. Unfortunately, the architecture of SSEC in which data

originates and is processed on privately owned edge devices

does not lend itself to conventional security systems (e.g., au-

thentication in order to access a resource). Care must be taken,

therefore, to ensure that i) peer-to-peer APIs in Collaborative

Edge or Hybrid SSEC architectures are designed such that

private information cannot be stolen by malicious attackers;

ii) it is difficult or impossible to “game” the system by

contributing incorrect sensing measurements or computation

results in order to obtain the incentives without expending

effort; iii) the system is resilient against attempts to sabotage or

“poison” the results of the application for malicious purposes;

iv) the system is resilient against denial-of-service attacks such

as intentionally delaying tasks in order to harm the QoS.



V. ROADMAP FOR FUTURE WORK

A. SSEC and 5G

5G promises to have an estimated network speed as fast

as 10 Gb/s and a network latency as low as 1 ms [51].

We envision that 5G will significantly boost the performance

of SSEC and enable new SSEC applications. For example,

the emergence of 5G networking capabilities will increase

the number of connected devices on a network and pro-

mote collaboration among private edge devices. The delay

requirement of 5G requires base stations to be deployed at

a high density, which would also be able to serve as edge

servers in SSEC. With 5G networks, SSEC applications that

involve video content transfer such as crowd video sharing and

plate recognition will significantly benefit from the boosted

Internet speed and ultra low latency. We envision that more

data intensive and delay sensitive SSEC applications will be

enabled by 5G and future networking technologies.

B. SSEC and AI

AI at the edge is a growing trend in both industry and

academic research. Many AI-enabled chips have been devel-

oped and integrated into video cameras, hand-held devices,

and vehicles [42]. However, AI capabilities are still far from

being pervasive - many edge devices are low-end sensors

without processing capabilities or hardware (e.g., GPU) for

supporting AI algorithms. SSEC can promote AI by develop-

ing a collaborative intelligent edge where lower end devices

can offload AI tasks to devices with AI capabilities. Many

roadblocks must be removed for this vision to be realized.

For example, performing AI tasks on privately owned edge

devices inevitably incurs an energy cost. Considering that the

battery is often the most precious resource of an edge device

[14], incentive mechanisms must be designed so that a fair

market can form to reward those who contribute energy. The

collaborative intelligent edge also involves interactions among

devices of differing ownership. Therefore, privacy and trust

concerns must be carefully addressed.

C. SSEC and Human-in-the-loop

Human-in-the-loop SSEC enables the integration of human

intelligence (e.g., context-awareness, cognitive skills) with

the processing and sensing capability of physical devices.

We envision that the human component of SSEC can be

modeled as a “social edge node” in which the human can

perform inference or make decisions in the edge computing

framework just like a physical device. This Human-in-the-

loop SSEC paradigm can benefit many mission critical tasks

by introducing the domain expertise that people possess. For

example, humans can improve the effectiveness of physical

systems in many intelligent tasks (e.g., disaster assessment [7]

and traffic abnormality detection [6]). We envision that a new

set of theories for building human-machine hybrid systems

must be developed to fully leverage human intelligence in

SSEC.

VI. CONCLUSION

In this paper, we present an emerging SSEC framework

to exploit the edge-enabled infrastructure and the ever-

increasingly powerful IoT devices to improve the scalability

and responsiveness of social sensing applications. With the

human-centric design, SSEC envisions to integrate human

intelligence into the process of data collection, processing,

analysis, and decision making. We discuss several emerging

applications that are enabled by SSEC, together with a number

of open research challenges are to be undertaken by the

community. We hope this paper will bring the SSEC paradigm

to the attention of the community.
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