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Abstract—Artificial Intelligence (AI) has been widely adopted
in many important application domains such as speech recog-
nition, computer vision, autonomous driving, and AI for social
good. In this paper, we focus on the AI-based damage assessment
applications where deep neural network approaches are used to
automatically identify damage severity of impacted areas from
imagery reports in the aftermath of a disaster (e.g., earthquake,
hurricane, landslides). While AI algorithms often significantly
reduce the detection time and labor cost in such applications,
their performance sometimes falls short of the desired accuracy
and is considered to be less reliable than domain experts.
To exacerbate the problem, the black-box nature of the AI
algorithms also makes it difficult to troubleshoot the system
when their performance is unsatisfactory. The emergence of
crowdsourcing platforms (e.g., Amazon Mechanic Turk, Waze)
brings about the opportunity to incorporate human intelligence
into AI algorithms. However, the crowdsourcing platform is
also black-box in terms of the uncertain response delay and
crowd worker quality. In this work, we propose the CrowdLearn,
a crowd-AI hybrid system that leverages the crowdsourcing
platform to troubleshoot, tune, and eventually improve the black-
box AI algorithms by welding crowd intelligence with machine
intelligence. The system is specifically designed for deep learning-
based damage assessment (DDA) applications where the crowd
tend to be more accurate but less responsive than machines.
Our evaluation results on a real-world case study on Amazon
Mechanic Turk demonstrate that CrowdLearn can provide timely
and more accurate assessments to natural disaster events than
the state-of-the-art AI-only and human-AI integrated systems.

I. INTRODUCTION

The recent advances in artificial intelligence (AI) has trans-
formed many important domains of modern life (e.g., trans-
portation, finance, education, healthcare, and entertainment)
and its encroachment is expected to intensify [1]–[4]. In
this paper, we focus on an important AI application - deep
learning-based disaster damage assessment (DDA) where
deep neural network approaches are used to automatically
identify damage severity of impacted areas from imagery re-
ports in the aftermath of a disaster (e.g., earthquake, hurricane,
landslides) [5], [6]. The assessments are then delegated to
emergency response agencies (e.g., FEMA and police depart-
ments) to adopt appropriate countermeasures. Traditionally,
the damage assessment was primarily done by domain experts,
which suffers from the apparent limitation of the heavy labor
cost of labeling and low efficiency in the presence of massive
amount of data [7]. A set of AI algorithms have recently
been developed to automatically label the damage severity

in images from social media posts without the presence of
domain experts [5], [6].

While AI algorithms can significantly reduce the labor cost
and improve the detection efficiency in DDA applications,
they are prone to various failure scenarios (see Figure 1). For
example, the AI algorithms mistakenly report a severe damage
for the images in Figure 1(a) and 1(b) and report no damage
for images in Figure 1(c) and 1(d) (please refer to the detailed
discussions under Figure 1). One main reason for the above
failure scenarios is that the AI-based DDA algorithms can only
capture the low level features of the images (e.g., color, layout,
shapes) but fail to “understand” the high level context of the
images (e.g., the story behind the image). Such failure may
lead to severe consequences (e.g., the rescue team may be
sent to the wrong places while places where people’s lives are
at stake are not responded). In contrast, human intelligence
(HI) is often more accurate in such failure scenarios [8]. For
example, humans can reliably assess the damage severity by
identifying fake or irrelevant images (e.g., Figure 1(a) and
1(b)) and observing the actual events happening in the images
(e.g., Figure 1(c) and 1(d)).

(a) Fake Image (b) Close Up

(c) Low Resolution (d) Implicit
Image (a) is a fake image showing a car falling from a huge
cleavage of a road. Image (b) is a close-up of a crack on a road.
The AI algorithms mistakenly return false detection result of
“severe damage” for both images. Image (c) shows a disaster scene
image with low resolution. Image (d) shows kids were injured and
taken away from a damaged area. The AI algorithms mistakenly
return false detection result of “no damage” for both images.

Figure 1: Examples failures of AI algorithm of DDA

Motivated by the unique and complementary advantages and



limitations of AI and HI, we propose CrowdLearn, a crowd-AI
hybrid system that leverages HI to troubleshoot, tune and even-
tually improve the performance of AI-based DDA application.
To acquire HI, we leverage the crowdsourcing platform (i.e.,
Amazon Mechanical Turk or MTurk) that provides a massive
amount of freelance workers with low cost. However, two
critical pitfalls exist by leveraging crowdsourcing platform:
1) the freelance workers may not be able to provide responses
that are as accurate as domain experts due to the lack of
experience/expertise; 2) the delay of the crowd workers can
be potentially too high to be acceptable for DDA applications.
These two pitfalls are further exacerbated by the black-box
challenges of both the AI and crowdsourcing platform that
are not well addressed by the existing literature in human-AI
systems [9], [10]. We elaborate the challenges below.

Black-box AI Challenge: the first challenge in combining
HI and AI lies in the black-box nature of AI algorithms. In
particular, the lack of interpretability of the results from AI
algorithms makes it extremely hard to diagnose the failure
scenarios such as performance deficiency - why the AI model
fails? Is this due to lack of training data or the model itself?
Such questions make it hard for the crowd to effectively
improve the black-box AI model. The interpretability issue
has been initially identified in [10], [11] where accountable
AI solutions were proposed to leverage humans as annotators
to troubleshoot and correct the outputs of AI algorithms. How-
ever, these solutions simply use humans to verify the results of
AI and ignore the issue where human annotators can be both
slow and expensive. There also exist some human-AI systems
that use crowdsourcing platforms to obtain labels or features
to retrain the model [12], [13]. However, these systems do not
address the problem where the AI algorithms themselves are
problematic in which no matter how many training samples
are added, the AI performance will not increase. Given the
black-box nature of AI, the research question we address here
is: how do we accurately identify the failure scenarios of AI
that can be effectively addressed by the crowd?

Black-box Crowdsourcing Platform Challenge: the sec-
ond unique challenge lies in the black-box nature of the
crowdsourcing platform, which is characterized by two unique
features. First, the requester (the DDA application that queries
the platform) often cannot directly select and manage the
workers in the crowdsourcing platform. In fact, the requester
can only submit tasks and define the incentives for each
task. The lack of control makes the incentive design for the
crowdsourcing platform very difficult since we cannot cherry-
pick the highly reliable and responsive workers to complete the
tasks. For this reason, the current incentive design solutions
that assume the full control of the crowd workers cannot
be applied to our problem [14]–[18]. Second, the time and
quality of the responses from the crowd workers are highly
dynamic and unpredictable and their relationships to incentives
are not trivial to model. Existing solutions often assume that
more incentives will lead to less response time and high
response quality [13], [19]. However, we found the quality
of the responses from the crowd workers is diversified and

does not simply depend on the level of incentives provided in
our experiments (e.g., the quality can be high even with low
incentives provided). Similarly, we observe the response delay
from crowd is not simply proportional to the incentive level.
With these unique features, the research question to tackle here
is: how to effectively incentivize the crowd to provide reliable
and timely responses to improve AI performance?

In this work, we design a CrowdLearn framework that
leverages human feedback from the crowdsourcing platform to
troubleshoot, calibrate and boost the AI performance in DDA
applications. In particular, CrowdLearn address the black-
box challenges of AI and the crowdsourcing platform by
developing four new schemes: 1) a query set selection (QSS)
scheme to find the best strategy to query the crowdsourcing
platform for feedback; 2) a new incentive policy design (IPD)
scheme to incentivize the crowd to provide timely and accurate
response to the query; 3) a crowd quality control (CQC)
scheme that refines the responses from the crowd and provides
trustworthy feedback to the AI algorithms; 4) a machine
intelligence calibration (MIC) scheme that incorporates the
feedback from the crowd to improve the AI algorithms by
alleviating various failure scenarios of AI. The four compo-
nents are integrated into a holistic closed-loop system that
allows the AI and crowd to effectively interact with each
other and eventually achieve boosted performance for the
DDA application. The CrowdLearn framework was evaluated
using Amazon Mechanical Turk (MTurk) and a real-world
DDA application. We compared CrowdLearn with the state-
of-the-art baselines in both AI-only algorithms and human-
AI frameworks. The results show that our scheme achieves
significant performance gain in terms of classification accuracy
in disaster damage assessment with reasonably low response
time and costs.

II. RELATED WORK

A. Human-AI Systems

Humans have traditionally been an integral part of artificial
intelligence systems as a means of generating labeled training
data [3], [11], [20]. Such a paradigm has been proven to be
effective in supervised learning tasks such as image classifica-
tion [21], speech recognition [22], autonomous driving [23],
social media mining [24], and virtual reality [25]. However, it
also suffers from two key limitations. First, some applications
(e.g., damage assessment) may require a large amount of
training data to achieve reasonable performance, which could
be impractical due to the labor cost [5], [9]. Second, the
AI models are often black-box systems and it is difficult to
diagnose in the event of failure and unsatisfactory perfor-
mance. To address these limitations, a few human-AI hybrid
frameworks have been developed in recent years. For example,
Holzinger et al. proposed the notion of interactive human
machine learning (“iML”) where humans directly interact
with AI by identifying useful features that could be incor-
porated into the AI algorithms [26]. Branson et al. invented
a human-in-the-loop visual recognition system to accurately
classify the objects in the picture based on the descriptions



of the picture from humans [12]. Nushi et al. developed
an accountable human-AI system that leverages workers on
MTurk to identify the limitations of the AI algorithms [10]
and provide suggestions to improve them. However, the above
solutions largely ignored the innate limitations of the AI
algorithms that cannot be simply improved by retraining the
model with more data. In contrast, CrowdLearn proactively
identifies the innate limitations of AI and develops a set of
machine intelligence calibration strategies to address various
failure cases. Moreover, the above human-AI systems also
ignore the black-box nature of crowdsourcing platform and
adopt a fixed-incentive strategy that randomly assigns data for
the crowd to label. Such an approach could cause significant
delay in acquiring the human labels. In contrast, CrowdLearn
incorporates a context-aware reinforcement learning scheme
to ensure quick and reliable response from the crowd.

B. Active Learning Frameworks

Active Learning (AL) is a common technique to combine
machine and human intelligence in human-AI systems [13]. In
an active learning framework, an AI algorithm actively asks
for the labels of some instances from domain experts [27].
The major benefit of AL is that it selects a “subset” of data
samples to be labelled and significantly reduces the labeling
costs and improves the efficiency. For example, Ambati et al.
proposed Active Crowd Translation (ACT), a new machine
translation paradigm where active learning technique is applied
to dynamically query the crowd for annotations of texts. The
annotations are then used to train a AI model to automatically
translate low resource languages [28]. Laws et al. proposed
an active learning framework using a retraining technique for
supervised learning tasks - the algorithm iteratively identify
instances for the crowd to obtain the labels and retrain the
model using the newly obtained labels [13]. However, these
solutions could not handle scenarios where AI algorithms fail
due to the flaws in their model design instead of insufficient
training data. In contrast, CrowdLearn is able to diagnose
the model and query the crowd to directly take over the AI
algorithm in such failure scenarios. We compare our scheme
with representative active learning frameworks in Section V.

C. AI-based Disaster Response

Disaster response is a critical application to ensure im-
mediate resolution to emergent and hazardous events [29]–
[33]. A critical step in disaster response is to perform damage
assessment (e.g., determine the severity of the damage caused
by a disaster based on imagery data). Traditionally, the damage
assessment models were built on remote sensing data (e.g.,
satellite images). For example, Facebook recently proposed
an AI framework to identify the areas that were severely
affected by a disaster using convolutional neural networks
(CNNs) on satellite imagery [34]. In a more recent work,
Nguyan et al. developed a deep CNN model with domain-
specific fine-tuning (referred to as VGG16) to effectively
detect the level of damage from social media images [6].
Li et. al further extends the VGG16 model to accurately

locate the damage area by combining CNN and Grad-CAM to
generate a damage heatmap of a given image [5]. However, the
above AI-driven solutions are incapable of providing accurate
damage assessments in cases that deal with low-resolution or
deceptive images. In this paper, we propose a novel scheme
to significantly improve the performance of AI algorithm
by welding the crowd wisdom with AI. To the best of our
knowledge, CrowdLearn is the first Crowd-AI hybrid system
in this application domain.

III. PROBLEM FORMULATION

In this section, we first introduce the AI and crowd models
respectively and then formally define our problem.

A. AI-based Disaster Damage Assessment Model

We first introduce the AI-based Disaster Damage Assess-
ment (DDA) model. In a DDA application, images posted
from social media related to a disaster event are dynamically
crawled and classified based on the levels of the damage
reported in the image. Figure 2 shows an example of different
levels of damage from images in an DDA application. The
damage assessment provides the critical information for emer-
gency responses (e.g., sending out the rescue teams, allocating
resources). The DDA application is constantly running and the
images of the disaster are periodically crawled and analyzed.
We refer to the updating period as a sensing cycle, which is
formally defined below.

(a) No Damage (b) Moderate Damage (c) Severe Damage

Figure 2: Examples Output Labels of DDA

DEFINITION 1. Sensing Cycle (Ω): a period of time where
new (unseen) data samples are collected.

We assume a DDA application has a total of T sensing
cycles. The input data samples to the DDA algorithm is a
set of N images, denoted as It1, I

t
2, ..., I

t
N , where Iti denotes

the ith input image at the tth sensing cycle. Each image Iti is
associated with a ground truth label Oti and an estimated label
(i.e., classification result) from the AI algorithm Õti .

As discussed in the introduction, we make a few observa-
tions about the deep learning-based DDA algorithms below.

1) Black-box: the DDA algorithms are black-box deep neu-
ral network models and the classification results in gen-
eral lack interpretability.

2) Failure accountability: the AI-based DDA algorithms can
fail (i.e., providing wrong classification labels for images)
and the failure scenarios cannot be easily diagnosed
without human scrutiny [11].

The above observations are critical in the design of the
CrowdLearn scheme. To alleviate the performance deficiency



of the AI algorithms, we meld AI and crowd intelligence into
a holistic system by leveraging the crowdsourcing platform.
We elaborate the crowdsourcing platform model below.

B. Crowdsourcing Platform Model

Crowdsourcing platforms are well known for its cost effi-
ciency and the massive amount of freelance workers [35]. We
first define the key terms used in our crowdsourcing platform.

DEFINITION 2. Crowd Query (qtx): a set of questions
assigned to the crowdsourcing platform.

DEFINITION 3. Query Response (rtx): the corresponding
answers provided to the crowd query qtx.

An example query is shown in Figure 3. We assume a
set of X(t) queries are sent at each sensing cycle t to the
crowdsourcing platform Q(t) = {qt1, qt2, ..., qtX(t)} where qtx
denotes the xth query submitted to the crowd at the tth sensing
cycle. Each query qtx is associated with an incentive provided
by the application, denoted as btx. We assume the application
has a total budget of B for the crowdsourcing platform.

Figure 3: An Example of Crowd Query on MTurk

The responses to the queries are denoted as R(t) =
{rt1, rt2, ..., rtX(t)} where rtx denotes the answer to qtx. For
each query, two items are solicited from the crowd: the label
of the image and a set of questions. The questions collect
the contextual information observed by humans that cannot
be easily extracted from the AI. For example, we ask humans
whether the image is fake and what is actually happening in
that image (e.g., car damage or bridge falling down). Such
contextual information cannot be easily captured by AI but is
crucial in determining the damage severity. We leverage the
contextual information to decide the actual label of the image
(more details in Section IV-C). Each response is associated
with a response delay denoted as dtx. We also make a few
observations about the crowdsourcing platform:

1) Black-box: the crowdsourcing platform is a black-box
where the requester cannot directly control or pick the
workers for the queries.

2) Unreliable Workers: the crowd workers are not perfectly
reliable and can provide responses based on their own
biases and personal opinions.

3) Non-trivial incentive-delay-quality Relationship: the rela-
tionship between incentives and the delay and quality of

the response from the crowd cannot be simply modeled
as linear relationships (e.g., the quality is proportional to
the incentives and the delay is inversely proportional to
the incentives). Instead, such relationship can be complex,
dynamic and context-dependent.

The above observations are elaborated in Section IV-B.
These observations of the crowdsourcing platform are critical
in the design of the incentive mechanism and quality con-
trol schemes in CrowdLearn to ensure timely and accurate
responses from the crowd.

Given the above definitions and assumptions, the goal of our
CrowdLearn system can be formulated as a constrained multi-
objective optimization problem. In particular, CrowdLearn
targets maximizing the classification accuracy of the AI-based
DDA algorithms, while minimizing the average delay from the
crowd for a given budget on the crowdsourcing platform. The
accuracy maximization objective ensures that the crowd can
help AI assess the damage severity with a high accuracy in the
absence of domain experts. The delay minimization objective
ensures that the crowd provides feedback to AI in a timely
manner. The resource constraints make sure the CrowdLearn
framework does not incur unexpected excessive costs to the
DDA application. Formally we have:

max: Pr(Oti = Õti |R(t), B),∀1 ≤ i ≤ N, 1 ≤ t ≤ T

min:
∑X
x=1 d

t
x

X
,∀1 ≤ x ≤ X(t), 1 ≤ t ≤ T

s.t.:
T∑
t=1

X(t)∑
x=1

btx ≤ B, 1 ≤ x ≤ X(t), 1 ≤ t ≤ T

(1)

IV. THE CROWDLEARN FRAMEWORK

An overview of the CrowdLearn framework is shown in
Figure 4. The CrowdLearn is designed as a crowd-AI hybrid
system that consists of four main modules: i) a Query Set
Selection (QSS) scheme that identifies failure instances in AI
algorithms and send queries to the crowd; ii) an Incentive
Policy Design (IPD) scheme that takes the query set from QSS
and assigns effective incentives for the queries to achieve the
desired response delay; iii) a Crowd Quality Control (CQC)
scheme that derives truthful answers from the crowd response;
iv) a Machine Intelligence Calibration (MIC) scheme that
incorporates query answers from CQC to improve the accuracy
of the AI algorithms. We present them in detail below.

A. Query Set Selection (QSS)

The design of QSS is motivated by the two common failure
scenarios of AI algorithms: 1) the lack of sufficient training
data, and 2) the innate problem of the AI algorithm itself
(e.g, oversimplified assumptions, inappropriate models). In
CrowdLearn, we address the first failure scenario by actively
asking the crowd to provide more reliable labels (e.g., the
damage severity of specific images in DDA application) and
use the labels to retrain the model. With more training samples
that are judiciously selected by QSS, the performance of AI is
expected to improve. We address the second failure scenario by



System workflow - 1© QSS selects a set of data samples to query
the crowd. 2© IPD takes in the query set and generates a monetary
incentive for each query. The query set with incentives are submitted
to the crowdsourcing platform as a set of tasks. 3© The workers take
the tasks and provide answers to the queries. CQC takes the answers
from the crowd and provides quality control to generate truthful
answers. 4© MIC compares the crowd answers with the results of
the AI algorithms and improve their accuracy.

Figure 4: System Architecture of CrowdLearn

directly offloading the inference tasks to the crowd - i.e., ask
the crowd to take over the AI algorithm. In both cases, we need
to first identify the subset of data samples to be labeled from
the crowdsourcing platform. Note that it is often impractical
to send all data samples for the crowd to label due to budget
and time constraints [7], [13]. The QSS module is designed
to find the subset of data samples to query the crowd that can
effectively address the failure scenarios of AI algorithms.

To identify the query subset, the key strategy is to identify
the data samples that the AI algorithm is uncertain about -
i.e., cannot confidently decide the label of the sample. Take
the DDA as an example, if the AI algorithm cannot distinguish
which damage level best describes the image, then it is better
to send the image for the crowd to label. Based on this
intuition, we first design a Query by Committee (QBC)-based
active learning (AL) scheme to derive the uncertainty of the
AL algorithms. In the QBC scheme, a set of relevant AI
algorithms vote which new data sample needs to be queried
from the crowd. Such technique has been proven to be robust
by removing the bias of a single classifier [36]. We define a
few key terms for our QBC-based model.

DEFINITION 4. Committee: a committee is set of AI
algorithms for our DDA application.

DEFINITION 5. Expert: an expert is an AI algorithm
selected into the committee.

In the DDA application, we choose a diverse set of M
representative DDA algorithms AI1, AI2, ..., AIM that all take
images as inputs. At a given sensing cycle, each expert (a deep
neural network DDA algorithm) independently labels all the
unseen data samples. The output of each expert is defined as
an “expert vote”.

DEFINITION 6. Expert Vote: an expert vote is the output
of the AI algorithm, which is a probabilistic distribution of all
possible class labels estimated by the algorithm.

We use V(AItm,i) to denote the vote of AIm at a given
data sample Iti by AIm. For each algorithm AIm, we define
an expert weight - wtm as follows.

DEFINITION 7. Expert Weight (wtm): the level of trustwor-
thiness of the algorithm in determining the final label of the
data sample. The higher the weight, the more trustworthy the
algorithm’s classification result is.

In CrowdLearn, the expert weights are dynamically adjusted
based on the feedback from the crowd. We discuss the adjust-
ment process in the Section IV-D. Given the expert weights
and votes of the experts, the committee decides the final label
of the data sample (referred to as “committee vote”), which is
the weighted sum of the label distributions of all committee
members. Formally, we calculate the committee vote ρ for
sample Iti as:

ρti =

M∑
m=1

wtm × V(AItm,i) (2)

The label distribution is further normalized with a sum of
1 to emulate an aggregated probabilistic distribution of the
inference results. To quantify the uncertainty of AI algorithms
in a committee, we define a new metric Committee Entropy.

DEFINITION 8. Committee Entropy (H): the committee’s
overall uncertainty of labeling a data sample.

We derive Hti as the entropy of the normalized ρti.

Hti = −
∑
ρ∈ρti

Pr(ρ)× logPr(ρ) (3)

Given the committee entropy of each data sample, the
intuitive query set selection strategy is to pick data sples with
the highest committee entropy. However, such a stratamegy
would fail when all classifiers confidently report the same
wrong result. For example, in the DDA application, if all
classifiers fail to capture fake images and report the fake
images as “severe damage” with high confidence, the QSS
will never pick the fake images for the crowd to check.
Therefore, the QSS scheme also has to occasionally include
the data samples with low committee entropy in the query set.
This turns out to be an exploitation-exploration problem in
reinforcement learning. We adopt an ε− greedy strategy [37]
in our QSS scheme to solve this problem. We summarize the
detailed procedure of QSS scheme in Algorithm 1.

B. Incentive Policy Design (IPD)

It is critical to provide timely and high quality responses
from the crowd in the DDA application. Therefore, the
CrowdLearn will decide how to incentivize the crowd after
QSS selects a query set. We found the design of an incentive
policy is a non-trivial problem due to two canonical chal-
lenges: 1) modeling the relationship between the incentives
and the quality and delay of the crowd response is a non-
trivial problem for the black-box crowdsourcing platform; 2)
the quality and delay are context-dependent (e.g., the response



Algorithm 1 QSS Scheme
1: Input - Size of query set Y , Images It1, I

t
2, ..., I

t
N

2: Initialize: Committee = AI1, AI2, ..., AIM , votes = newArray[M ],
CommitteeEntropy = null, output = newArray[Y ]

3: for 1 ≤ t ≤ T do
4: for 1 ≤ i ≤ N do
5: for 1 ≤ m ≤M do
6: votes[m]← V(AItm,i)
7: end for
8: calculate CommitteeEntropy using Equations (2) - (3).
9: end for

10: build sorted list s list based on CommitteeEntropy (high to low)
11: for 1 ≤ t ≤ Y do
12: output.append(s list.pop()) w.p. (1–ε)
13: output.append(s list[rand(1, sizeof(s list))]) w.p. ε
14: end for
15: end for
16: return output

delay has different characteristics at different time of the
day). To address the above challenges, we design a new
reinforcement learning-based Incentive Policy Design (IPD)
scheme to incentivize the black-box crowdsourcing platform
for timely responses to the queries from the crowd.

1) Characterizing The Influence of Incentive on Response
Delay and Quality: We first perform a pilot study to un-
derstand the effect of changing the level of incentives w.r.t.
response delay and quality on our crowdsourcing platform
MTurk. For the pilot study, we chose 7 incentive levels (1
cent, 2 cents, 4 cents, 6 cents, 8 cents, 10 cents, and 20 cents)
and four different temporal contexts (morning, afternoon,
evening and midnight). At each (incentive level, temporal
context) combination, we assign a total of 100 HITs (Human
Intelligence Tasks) to the MTurk platform: we issue a total
of 20 queries and each query is allowed to be answered
by 5 workers. In the existing literature, the response time
of the human workers is often assumed to be proportional
to the incentives provided [10], [13], [38]: the higher the
incentive per task, the faster a crowd worker will provide a
response. While this assumption is intuitive, our pilot study
shows it may not always hold on MTurk. Figure 5 shows the
response time of the crowd across different temporal contexts
and incentive levels. We observe that the response time does
seem to decrease as the incentive increases in the morning
and afternoon. However, we also observe that most incentive
levels (except for the lowest and highest) have very similar
response time during evening and midnight. We attribute this
observation to the fact that MTurk workers are often more
active at night (e.g., after work) so that a query can always find
a set of workers who are willing to take the HITs. However,
during the day time, workers are less active and appear to be
more “selective” in taking HITs. Such dynamics indicate the
importance of considering the temporal contexts in the design
of the incentive scheme for CrowdLearn.

We also study the quality of the annotated labels from the
crowd with respect to the incentives provided. The results are
shown in Figure 6. We observe that while very low incentives
(e.g., 1 cent and 2 cents per HIT) generate relatively low label
quality, increasing the incentives does not always significantly

(a) Morning (b) Afternoon

(c) Evening (d) Midnight

Figure 5: Crowd Response Time vs. Incentives on MTurk

increase the quality. By performing Wilcoxon Test [39] (a sta-
tistical hypothesis test commonly used to compare two related
samples), we found no statistical significance (significant if
p ≤ 0.05) when the incentive level increases from 2 to 4 (p
= 0.12), from 4 to 6 (p = 0.45), from 6 to 8 (p=0.77), and
from 8 to 10 (p=0.25)). We attribute the above observation
to the fact that the image labeling tasks for the workers are
relatively intuitive - workers often do not need to exert much
effort/expertise to accurately label the images notwithstanding
the incentives.

Figure 6: Label Quality vs. Incentives on MTurk

The above results offer us with the following design princi-
ples for the IPD module: 1) the context information must be
incorporated into the policy design; 2) the dynamic response
delay must be explicitly considered; 3) it may not be wise to
increase the incentives merely for improved annotation quality.
With the above principles, we design a reinforcement learning-
based framework that targets at minimizing the response delay
of the crowd workers. Note that we do not intend to use in-
centive mechanism to control the response quality considering
the third design principle. Instead, we design another module
to perform the crowd quality control in Section IV-C.

2) Constrained Contextual Multi-armed Bandit for Incen-
tive Policy: We found that the incentive design problem can be
nicely mapped to a constrained contextual multi-armed bandit
(CCMB) problem in reinforcement learning. The key reason
for choosing the contextual bandit is that it can incorporate the



context information into the incentive policy design (e.g., the
contextual bandit can design fine-grained policy assignments
under different temporal contexts). Also, the reinforcement
learning framework allows the CCMB to dynamically adapt
to the uncertain black-box crowdsourcing environments and
derive the optimal incentive policy. We formally define the
key terms in CCMB and its mapping to IPD below.

DEFINITION 9. Uncertain Environment: the uncertain
environment in IPD refers to the black-box crowdsourcing
platform that has the non-trivial incentive-delay tradeoff.

DEFINITION 10. Context: the context in IPD refers to the
temporal context for the crowdsourcing platform. We choose
four contexts - morning, afternoon, evening and midnight.

DEFINITION 11. Action: the action in IPD refers to the
choice of incentive levels for a query.

DEFINITION 12. Payoff: the payoff in IPD refers to the
additive inverse of the average delay of the query answers.
The less delay, the higher payoff.

DEFINITION 13. Action Cost and Resource Budget: the
action cost is the incentive set for each query. The resource
budget is the total cost for using the crowdsourcing platform.

We formally define our CCMB model below. We consider
a CCMB with a context set X = {1, 2, ..., Z} and an
action set A = {1, 2, ...,K}. An example context set is
X = {morning, afternoon, night,midnight} and an exam-
ple action set is A = {1, 2, 4, 6, 8, 10, 20} where each entry
in A denotes the amount of money (in cents). We assume the
crowdsourcing platform is associated with a specific context
and each action k ∈ A generates a non-negative payoff ptk
with cost ck at each sensing cycle. We assume the conditional
expectation E[ptk|X t = z] is unknown to the application. We
use Ct to denote all the costs incurred at the tth cycle. We
assume the context X t is observable at the beginning of a
cycle. However, the payoff of the action taken by the agent is
only revealed at the end of the cycle (i.e., you do not know
the delay until the responses are submitted by the crowd).

The goal of CCMB is to derive an optimal incentive policy
that decides to perform which action at which context to
maximize the payoffs while keeping the total action cost
within the resource budget. The CCMB problem is a de-
cision making process that maps the historical observations
{X 1,A1,P1;X 2,A2,P2; ...;X t−1,At−1,Pt−1} and the cur-
rent context X t to an action At ∈ A. The objective of the
CCMB problem is to maximize the expected total payoff for
a given resource budget constraint as follows:

argmax
At

T∑
t=1

P t, 1 ≤ t ≤ T (payoff maximization)

s.t.:
T∑
t=1

Ct ≤ B, 1 ≤ t ≤ T (budget constraint)

(4)

This objective function can be solved using the adaptive
linear programming approach in [40]. The detailed discussion

of training process of IPD is discussed in Section V.

C. Crowd Quality Control

A key challenge of the crowdsourcing platform is that the
quality of the answers vary and some workers can provide
wrong answers due to their limited knowledge or subjective
opinions. In fact, our pilot studies show the average labeling
accuracy of the crowd workers is not perfect (i.e., around
80% in Figure 6). Several existing solutions are developed to
address this issue. For example, majority voting is a common
technique (Voting) where the the aggregated result is simply
the one returned by the majority of the workers. This approach
is known to be suboptimal when workers have different
reliability [41]–[43]. More principled approaches such as truth
discovery (TD-EM) [29] is able to jointly derive the truthful
label of the queries as well as the reliability of the workers.
However, this technique does not work well when the number
of responses per worker is low [44]. Another commonly used
technique is worker quality filtering (Filtering) [13], which
blacklists the workers with a record of poor labeling quality.
However, this approach may fail when the workers are new to
the platform and do not have sufficient labeling history. There
also exist some expertise-aware worker assignment schemes
[38], [45]–[47] that directly assign queries to workers with
high quality. However, they assume the application has full
control of the worker pool [48], which does not apply to the
black-box crowdsourcing platform we study.

In light of the knowledge gap of existing crowd quality
control schemes, we devise a new idea: we not only ask the
crowd to provide direct labels of data samples, but also provide
their evidence. The evidence is captured by a set of question-
naires (Figure 3). For example, in the DDA application, we ask
the workers to answer “Is the image photoshopped (i.e., fake
image)?”, “Does this image show a damage of road?”. Note
that we use the format of fixed-form questionnaire rather than
free-form input (e.g., ask the worker to describe the image)
to eliminate the challenge of parsing natural language. The
questionnaire collected a set of extra features that can help
derive the truthful labels of the images.

Given the labels and features provided by the workers, we
train a supervised classifier that takes both the labels and
the questionnaire answers of a query as inputs and outputs
the truthful label of the image. We choose the state-of-art
gradient boosting model (XGBoost) [49] as our classifier.
The combination of labels and questionnaire answers allows
CQC to achieve at least 5.75% higher accuracy than existing
approaches (shown in Table I). The accurate truthful labels
generated by CQC module provide us with a good basis to
evaluate and calibrate the AI algorithms. We elaborate the
details of calibration process next.

D. Machine Intelligence Calibration (MIC)

The MIC module is designed to calibrate and improve the
AI algorithms based on the labels provided by the crowd
workers. The MIC module includes three complementary



Table I: Aggregated Label Accuracy

Morning Afternoon Evening Midnight Overall

CQC 0.93 0.92 0.94 0.94 0.9350

Voting 0.82 0.83 0.85 0.87 0.8425

TD-EM 0.86 0.85 0.85 0.89 0.8625

Filtering 0.84 0.86 0.88 0.90 0.8775

calibration strategies that are performed simultaneously right
after the execution of CQC module within each sensing cycle.

Dynamic Expert Weights Update Strategy: Recall that
a set of AI algorithms form a committee in QSS module to
collectively decide the classification result of a data sample and
each algorithm is assigned an expert weight. The expert weight
is crucial in determining the performance of the AI algorithms.
We design a dynamic expert score update strategy that can
learn the performance of each expert in the committee as the
feedback is collected from the crowd. The proposed strategy
builds a feedback control process using the crowd feedback as
the control signal. In particular, for each AI algorithm AIm,
we compute a loss function based on the discrepancy of its
classification result and the truthful label from the crowd as:

Ltm =

i∈Qt∑
1− δ(KLsym(D(AItm,i),D(TLti))

(5)

where Qt denotes the set of images chosen by QSS for
MTurks at the tth sensing cycle. D(TLti) is the probabilis-
tic distribution of the labels obtained from CQC module.
KLsym(D(AItm,i),D(TLti)) is the symmetric KL-Divergence
between the two label distributions. δ is a normalization
process to map the divergence to a [0,1] scale. Intuitively,
the more different that the output from the AI algorithm is
from the truthful label from the crowd, the higher the loss
is. Given the loss function, we dynamically update the expert
weights of the AI algorithms at each sensing cycle using a
classical exponential weight update rule [50]. The updated
weights reflects the reliability of each expert at the current
sensing cycle. We use the updated weights to derive the final
labels of the input images as discussed in Section IV-A.

Model Retraining and Crowd Offloading Strategies: The
model retraining strategy is to address the failure case of
AI algorithms that is caused by insufficient training samples.
Similar to existing hybrid AI-human frameworks [13], we use
the truthful labels provided by the crowdsourcing platform to
retrain the AI models for the next sensing cycle. The crowd
offloading strategy is implemented to tackle the cases where
the AI algorithms may have innate flaws (e.g., failure to
handle fake images in DDA applications). In this strategy, the
truthful labels derived from the CQC is used to directly replace
the classification labels of the query set from QSS in the
current sensing cycle. The query set contains two categories
of images that AI potentially fails: 1) the images that the
AI algorithms in the committee do not agree with each other
on their labels (captured by the committee entropy) ; and 2)
the images that the AI algorithms happen to make the same

wrong decision (captured by the ε − greedy strategy). By
replacing both categories of images with human labels, the
crowd offloading strategy not only prevents the AI from giving
uncertain classification labels but also addresses the failure
case when AI algorithms make a common mistake.

V. EVALUATION

In this section, we present an extensive evaluation of our
CrowdLearn scheme. We first discuss the evaluation setup
and baselines for comparison. We then present the evalua-
tion results using a real-world deep learning-based damage
assessment (DDA) application in the aftermath of a disaster
event. The results show that CrowdLearn achieves significant
performance gains in terms of classification accuracy and
crowd delay compared to the state-of-the-art baselines.

A. Baselines

We choose the following state-of-the-art DDA schemes and
hybrid human-AI solutions as our baselines. For the QSS
module in CrowdLearn, we use VGG16, BoVW, and DDM
as the committee.
• VGG16: A DDA scheme that uses deep Convolutional

Neural Networks (CNN) [6].
• BoVW: A DDA scheme that uses handcrafted features

(e.g., scale invariant feature transform, histogram of ori-
ented gradients) to train a neural network classifier [51].

• DDM: A DDA scheme that combines CNN and Gradient-
weighted Class Activation Mapping (Grad-CAM) to pro-
duce a damage heatmap of a given image, which is used
to derive the damage severity [5].

• Ensemble: An aggregation of the above algorithms
(VGG16, BoVW, DDM) using a boosting technique [52].

• Hybrid-Para: a human-AI hybrid system where humans
and AI independently label the images and their results
are integrated using a complexity index [53].

• Hybrid-AL: a crowdsourcing-based active learning
framework for AI algorithms where the annotated labels
collected from MTurk are used to re-train the AI algo-
rithm for the performance improvement [13].

B. Experiment Setup

We use a total of 960 social media images with golden
ground truth labels about the Ecuador Earthquake in 2016 from
Instagram and Twitter [6]. In our experiments, the dataset is
split into a training set and a test set. The training set is used
to 1) perform the pilot study to characterize the black-box
MTurk platform; 2) train the reinforcement learning-based IPD
module as described in Section IV-B; and 3) train the AI-
based DDA algorithms. The training set contains a total of 560
images ad the test set has a total of 400 images that emulates
unseen data dynamically generated during each sensing cycle.

We run the application over 40 sensing cycles during 4
different temporal contexts (i.e., morning, afternoon, evening,
midnight) - 10 cycles for each temporal context. Each sensing
cycle lasts 10 minutes and has a set of 10 images from the
test set. The input and output to CrowdLearn and all baselines



schemes are the same: each scheme takes an image as input
and output severity level of the image (including severe,
moderate and no damage). Note that Hybrid-Para, Hybrid-
AL and CrowdLearn are different from other baselines in the
sense that they all leverage humans from MTurk. To that end,
we allow the three hybrid schemes to query the same amount
of images to MTurk (i.e., 5 images per sensing cycle).

C. Performance Evaluation

1) Classification Accuracy: In the first set of experiments,
we focus on the overall performance of all schemes in terms
of classification accuracy, which is evaluated using the classic
metrics for multi-class classification: Accuracy, Precision,
Recall and F1-Score. Similar to [5], [6], these scores are
macro-averaged since the dataset has balanced class labels.

Table II: Classification Accuracy for All Schemes

Algorithms Accuracy Precision Recall F1

CrowdLearn 0.877 0.904 0.885 0.894

VGG16 0.770 0.845 0.744 0.791

BoVW 0.670 0.707 0.744 0.725

DDM 0.807 0.891 0.765 0.823

Ensemble 0.815 0.892 0.778 0.831

Hybrid-Para 0.797 0.849 0.795 0.821

Hybrid-AL 0.823 0.883 0.803 0.841

The results are reported in Table II. We observe the
CrowdLearn consistently outperforms other baselines. In par-
ticular, CrowdLearn achieved 5.3% improvement on F-1 Score
compared to best-performing baseline (i.e., Hybrid - AL). The
reason is that the CrowdLearn can effectively integrate human
intelligence into the DDA algorithm. In particular, the MIC
module leverages human intelligence to improve the results
by fine tuning the expert weights of candidate AI algorithms
to outperform the AI-only schemes. Compared to other hybrid
human-AI systems, CrowdLearn actively troubleshoots and
eventually fixes the failure scenarios of AI algorithms. In
contrast, Hybrid-parallel only takes the crowd as a source
of annotations and does not directly interact with the AI
algorithm. Hybrid-AL only leverages crowd annotations for
retraining and cannot address the innate failure mode of
the AI algorithm. We further plot the ROC curves of all
schemes in Figure 7. We observe that CrowdLearn continues
to outperform other baselines when we tune the classification
thresholds.

2) Delay Analysis: Next, we evaluate the delay of all com-
pared schemes in terms of 1) execution time, and 2) delay of
query answered by the crowdsourcing platform. In a practical
setting, the complete life cycle of the DDA application should
include both of these delays. The experiment is conducted
on a PC with Nvidia RTX 2070 GPU and Intel i7-8700K 6-
core CPU and 16G of RAM. The average delay of algorithm
execution time and crowd delay of all schemes are listed in
Table III. We observe that the execution delay of CrowdLearn

Figure 7: Macro-average ROC Curves for All Schemes

is higher than AI-only schemes (i.e., VGG16, BoVW and
DDM) because CrowdLearn incorporates all three AI-only
algorithms as its committee and runs extra modules to generate
incentives and perform quality control to the crowd. We
also observe that that response delay from the crowdsourcing
platform is the major contributor to the overall delay of human-
AI hybrid systems including CrowdLearn. This observation
further demonstrates the importance of designing an effective
incentive policy to minimize the response delay from the
crowd and provide timely response to the application. The
results show that CrowdLearn scheme significantly reduces the
crowd delay by 35% compared to Hybrid-Para and Hybrid-AL
that both adopt a fixed incentive policy. We attribute such a
performance gain to our novel IPD module that leverages a
context-aware reinforcement learning scheme to dynamically
identify the optimal incentive strategy to reduce the response
delay from the crowd.

Table III: Average Delay (in Seconds) per Sensing Cycle

Algorithms Algorithm Delay Crowd Delay

CrowdLearn 55.62 342.77

VGG16 47.83 N/A

BoVW 37.55 N/A

DDM 52.57 N/A

Ensemble 85.82 N/A

Hybrid-Para 94.28 588.75

Hybrid-AL 53.54 527.61

To further examine the crowd response delay, we show the
delay across different temporal contexts. In addition to the
fixed incentive policy adopted by Hybrid-Para and Hybrid-
AL, we also compare to another heuristic baseline where
the incentives are randomly assigned. For the fixed incentive
strategy, we use the maximum incentive for each query (i.e.,
the total budget divided by the number of queries). The results
are shown in Figure 8. We observe that the IPD module in
CrowdLearn achieves the lowest delay with the least variations
across different contexts compared to both fixed and random
incentive mechanisms. This is because CrowdLearn can adjust
its incentives based on how responsive the crowd is. For
example, if the crowd is less responsive (e.g., in the morning),



CrowdLearn would provide higher incentives to stimulate
timely responses. On the other hand, CrowdLearn would
decrease the incentives when the crowd is very proactive (e.g.,
in the evening). The results show that CrowdLearn is robust
against the change of contexts and provides consistently faster
responses from the crowd than alternative strategies.

Figure 8: Crowd Delay at Different Temporal Contexts

3) Impact of Human Intelligence: A key parameter in our
problem setting is the size of the query set (i.e., the amount
of images that are sent to the MTurk for query). We tune
the size of the query set from 0 percent of the images at
each sensing cycle (AI only) to 100 percent (crowd only)
to examine its effect on the classification performance. We
only compare CrowdLearn with hybrid human-AI baselines
that include the crowd component and the best-performing
AI-only base line (i.e., Ensemble) as as a reference point. The
results are shown in Figure 9. We observe that the performance
gain of CrowdLearn compared to the baselines increases as
we increase the size of the query set, which demonstrates
the benefit of incorporating human intelligence into the AI
algorithms. Interestingly, we note the the performance of other
hybrid human-AI systems (i.e., Hybrid-AL and Hybrid-Para)
are rather stable even with the increase of the number of
queries to the crowd. We attribute this observation to the fact
that these baselines did not really fix the innate problem of
AI as we discussed in the classification accuracy section. We
also observe that the performance of CrowdLearn degrades to
Ensemble when there is no HI (i.e., 0% query set). However,
our scheme still outperforms Hybrid-Para and Hybrid-AL
when there is no AI (i.e., 100% query set). This is because
the CQC component in CrowdLearn can provide much more
accurate human annotations than the two baselines that simply
use majority voting for the quality control.

Figure 9: Size of Query Set vs. Classification Performance

4) Impact of Budget: In our last set of experiment, we study
the impact of the resource budget on the classification accuracy

and delay of CrowdLearn. We tune the total budget from 2
USD (1 cent per task on average) to 40 USD (20 cents per task
on average). The classification accuracy and delay are reported
in Figure 10 and Figure 11 respectively. We observe that
that the classification performance of CrowdLearn is worse
with low incentives as compared to higher ones. However, the
performance becomes stable as long as a reasonable budget is
provided (e.g., above 6 USD or 3 cents per task on average).
For example, the F1 score only increases by 0.18 from the
budget of 8 USD to the budget of 40 USD. We observe
similar impact of budget on the crowd response delay. The
above results show that the CQC scheme and IPD schemes in
CrowdLearn are robust to the changes of the budget and can
consistently perform well with reasonable budgets.

Figure 10: Budget vs. F1 Figure 11: Budget vs. Delay

VI. CONCLUSION AND FUTURE WORK

This paper presents the CrowdLearn framework to addresses
fundamental challenges in melding black-box AI and black-box
crowdsourcing platform in boosting the performance of deep
learning-based DDA applications. The CrowdLearn framework
leverages the crowd intelligence to troubleshoot, calibrate
and improve the AI performance in DDA. CrowdLearn also
designs a new incentive policy and quality control scheme
to ensure timely and high quality responses from the crowd.
Evaluation results on a real-world DDA application and MTurk
show that CrowdLearn significantly outperforms existing AI-
only baselines and state-of-the-art human-AI frameworks.

We envision CrowdLearn is a general crowd-AI hybrid ap-
proach that can be extended to applications beyond DDA (e.g.,
object recognition [54], autonomous driving [55], and event
detection [56]). It will be interesting to explore the unique
failure scenarios of AI algorithms in these applications and
investigate how the crowd can help boost their performance.

ACKNOWLEDGMENT

This research is supported in part by the National Science
Foundation under Grant No. CNS-1831669, CBET-1637251,
CNS-1566465 and IIS-1447795, Army Research Office under
Grant W911NF-17-1-0409, Google 2017 Faculty Research
Award. The views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the Army Research Office or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copy-
right notation here on.



REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision,
2015, pp. 1026–1034.

[2] T. J. Bench-Capon and P. E. Dunne, “Argumentation in artificial intel-
ligence,” Artificial intelligence, vol. 171, no. 10-15, pp. 619–641, 2007.

[3] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach.
Malaysia; Pearson Education Limited,, 2016.

[4] Y. Zhang, Y. Lu, D. Zhang, L. Shang, and D. Wang, “Risksens: A multi-
view learning approach to identifying risky traffic locations in intelligent
transportation systems using social and remote sensing,” in 2018 IEEE
International Conference on Big Data (Big Data). IEEE, 2018, pp.
1544–1553.

[5] X. Li, D. Caragea, H. Zhang, and M. Imran, “Localizing and quantifying
damage in social media images,” in 2018 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining
(ASONAM). IEEE, 2018, pp. 194–201.

[6] D. T. Nguyen, F. Ofli, M. Imran, and P. Mitra, “Damage assessment from
social media imagery data during disasters,” in Proceedings of the 2017
IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining 2017. ACM, 2017, pp. 569–576.

[7] Y. Zhang, D. Zhang, N. Vance, and D. Wang, “Optimizing online
task allocation for multi-attribute social sensing,” in 2018 27th Interna-
tional Conference on Computer Communication and Networks (ICCCN).
IEEE, 2018, pp. 1–9.

[8] D. Y. Zhang, L. Shang, B. Geng, S. Lai, K. Li, H. Zhu, M. T. Amin,
and D. Wang, “Fauxbuster: A content-free fauxtography detector using
social media comments,” in 2018 IEEE International Conference on Big
Data (Big Data). IEEE, 2018, pp. 891–900.

[9] A. Holzinger, M. Plass, K. Holzinger, G. C. Crişan, C.-M. Pintea, and
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