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Abstract—Crowdsourcing has emerged as an important data
collection paradigm in participatory and human-centric sensing
applications. While many crowdsourcing studies focus on sensing
and recovering the status of the physical world, this paper investi-
gates the problem of profiling the crowd sensors (i.e., humans). In
particular, we study the problem of accurately inferring the home
locations of people from the noisy and sparse crowdsourcing
data they contribute. In this study, we propose a semi-supervised
framework, Where Are You From (WAYF), to accurately infer
the home locations of people by explicitly exploring the localness
of people and the dependency between people based on their
check-in behaviors under a rigorous analytical framework. We
perform extensive experiments to evaluate the performance of
our scheme and compared it to the state-of-the-art techniques
using three real world data traces collected from Foursquare.
The results showed the effectiveness of our scheme in accurately
profiling the home locations of people.

Index Terms—Home Location Profiling, Crowdsourcing, Lo-
cation Based Social Networks (LBSN)

I. INTRODUCTION

With the rapid growth of ubiquitous Internet connectivity
and Location-Based Social Network (LBSN) services (e.g.,
Foursquare, Gowalla, Google Places), crowdsourcing has be-
come a key data collection paradigm in human-centric sensing
applications. While many crowdsourcing studies focus on
sensing and recovering the status of physical world, this paper
investigates the problem of profiling the crowd sensors (i.e.,
humans). In particular, we study the problem of accurately
estimating the home locations of people who are local res-
idents in a city from noisy and sparse crowdsourcing data
they contribute. User’s home location is an important piece of
information for many location based information services such
as targeted ads of local business [4], urban planning [11], and
location-aware recommendations [33], [17].

One simple approach for home location profiling task is
to take the average of all venue locations the user visited as
the estimated home location of the user. The assumption here
is that check-in points of users come from the places which
are close to their home locations. To check the accuracy of
this simple method, we compute the average error distance
between the estimated home location and the real home
location of users over the real world datasets collected from

three cities (i.e., Boston, Chicago and Washington D.C.) on
Foursquare. The results show that the average estimation error
of the simple average approach is 224 miles, 150 miles
and 260 miles on the three datasets respectively. Such large
estimation errors indicate the simple average method cannot
accurately estimate the user’s home location. The reasons are
mainly twofold: (i) users might visit venues that are not in
the same city as they live in (e.g., tourists); (ii) users might
visit venues that are in the same city as they live in but are
far away from their home locations.

Previous work has made significant progress to study the
problem of geo-locating people in a city using online social
network information [24], [19], [14], [23], [26]. However, most
of current solutions either ignore the localness of users or the
dependency between users based on their check-in behaviors.
Such limitations has led to suboptimal estimation results by
treating the non-local users as local ones or using the home
locations of non-related users to estimate the location for each
other [25]. To address these limitations, this work develops a
new principled framework to investigate the problem of home
location estimation of people by explicitly exploring both the
localness of users and dependency between users from their
check-in traces on LBSNs.

Two key challenges exist in order to solve the home location
profiling problem:

• Noisy Data: both local and non-local people of a city
can check-in at the venues in this city, which makes
it a challenging task to separate local users from non-
local ones solely based on their check-in traces (see
Figure 1(a)). Furthermore, users can check-in at venues
whose location are close or far away from his/her home
locations (see Figure 1(b)).

• Data Sparity: the data (i.e., check-in points) from social
media platforms are often incomplete and highly sparse:
a person might not check in at every venue she/he visits
in a city or she/he might intentionally choose not to check
in due to some privacy concerns [6].

To address the above challenges, this paper develops a new
semi-supervised framework, Where Are You From (WAYF),
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Figure 1. Check-in Points and Home Locations of Random Users on
Foursquare

to explicitly explore both spatial and temporal information
embedded in the crowdsourcing data publicly available on
LBSNs. In particular, we propose a Maximum Likelihood
Estimation (MLE) based algorithm to identify the local people
in a city and a Bayesian inference approach to discover
the dependent users based on their check-in behaviors. We
then formulate the home location profiling problem as an
optimization problem and derive an optimal solution for it.
Finally, we evaluate the performance of the WAYF scheme and
compare it with the state-of-the-art techniques through real-
world datasets which are collected from the city of Boston,
Chicago and Washington, D.C. on Foursquare. The evaluation
results demonstrate the effectiveness achieved by our scheme.

Finally, a note on disclaimer. First, we did not discuss
the privacy issue in this paper because the user identified
in collected datasets from LBSNs are all anonymized [12].
Additionally, there exists a rich set of literature on the topic
of protecting user’s privacy in online social media applica-
tions [21], [13]. These works can be used to address the
privacy challenges if there is such a need. Second, we did
not use any private data from a third party (e.g., Google Map
search data, which could make the home location profiling
problem a trivial problem to solve.). Instead, we only used
publicly available data from LBSNs with the goal to develop
a new principled approach as an open-source resource for the
research community.

We summarized the contributions of this paper as follows:
• In this paper, we investigate the problem of home location

profiling of crowd sensors from noisy and sparse crowd-
sourcing data which are collected from online social
media platform.

• We develop a principled framework (i.e., WAYF scheme)
that allows us to derive an optimal solution to accurately
estimate the home location of users by explicitly explor-
ing the localness of users and dependency between users
based on their check-in behaviors.

• Our proposed scheme is evaluated through real-world
datasets which are collected from online social media
(i.e., Foursquare) and compared to the state-of-the-art
techniques. Experimental results demonstrate that the
effectiveness achieved by our proposed scheme

The rest of this paper is organized as follows: In Section II,
we present the problem formulation of inferring the home
location of people. The proposed home location inference
scheme is discussed in Section III. Experiment and evaluation

results are presented in Section IV. We review related work
in Section V. Finally, we conclude the paper in Section VI.

II. PROBLEM FORMULATION

In this section, we introduce the problem of inferring the
home locations of people in a crowdsourcing application. In
particular, we consider a crowdsourcing application where a
set of I venues (i.e., M1,M2, ...,MX ) have been visited by a
group of J users (i.e., N1, N2, ..., NY ). Here we define Mi to
be the i-th venue and Nj to be the j-th user. Nj = 1 if the
user is a local resident of the city and Nj = 0 if she/he is not.
We further define the following inputs to our model.

• Definition 1. Venue-User Matrix MN . We define Venue-
User Matrix MNI×J to indicate which venue is visited
by which user. In particular, MN j

i = 1 indicates that
user Nj has check-in points at venue Mi and MN j

i = 0
otherwise.

• Definition 2. Time Length Vector TL. We define a Time
Length Vector TLJ to represent the time length of user’s
check-in points (i.e., the time difference between the first
and last check-in points of the user in the dataset). In
particular, hj = ζ denotes that user Nj’s check-in points
in a city lasts for ζ days.

One key challenge in crowdsourcing applications lies in
the fact that both local and non-local users (e.g., tourist) can
generate check-in points in a city. To address this challenge,
we first define a few important terms. In particular, we denote
the local attractiveness of a venue Mi as ηi, which is the
probability that a user is local given that the user has check-
in points at the venue Mi. Furthermore, considering a user
may have different time length of her/his check-in points, we
define ηi,ζ as the probability of a venue Mi to attract local
users whose check-in points in a city last for ζ days. Formally,
ηi and ηi,ζ can be given as:

ηi = p(Nj = 1|MN j
i = 1)

ηi,ζ = p(Nj = 1|MN j
i = 1, hj = ζ) (1)

We denote the prior probability that venue Mi is visited
by a user whose check-in points lasts for ζ days by oi,ζ . The
relationship between ηi and ηi,ζ can be expressed as:

ηi =

B∑
ζ=1

ηi,ζ ·
oi,ζ
oi

ζ = 1, ..., B (2)

where oi = p(MN j
i = 1). Formally, oi,ζ and oi are given as:

oi,ζ = p(MN j
i = 1, hj = ζ)

oi =

B∑
ζ=1

oi,ζ (3)

We further denote ϕi,ζ as the probability of a local user
(whose check-in points in a city lasts for ζ days) visits a venue
Mi. Similarly, we denote φi,ζ as the probability of a non-local



user (whose check-in points in a city lasts for ζ days) visits a
venue Nj . ϕi,ζ and φi,ζ are formally defined below:

ϕi,ζ = p(MN j
i = 1, hj = ζ|Nj = 1)

φi,ζ = p(MN j
i = 1, hj = ζ|Nj = 0) (4)

Based on Bayes’ theorem, the conditional probabilities ϕi,ζ
and φi,ζ can be future derived as:

ϕi,ζ = ηi,ζ × oi,ζ/c
φi,ζ = (1− ηi,ζ)× oi,ζ/(1− c) (5)

where c represents the prior probability that a randomly chosen
user is local.

In addition, we further define the following items to be used
in the identification of dependent users based on their check-in
behaviors.
• Definition 3. Check-Category Matrix CC. We define a

Visit Category Matrix CCJ×L to represent the number
of check-in points users have on each category of venues.
Here L is the set of venue categories. In particular, each
element CClj is the number of check-in points of user
Nj on venues whose category belongs to category l.

• Definition 4. Check-Time Matrix CT. We define a Check-
Time Matrix CTJ×2 to represent the number of check-in
points of users at different time of a day. In particular,
each element CT dj , (d ∈ [1, 2]) is the number of check-in
points of user Nj on daytime and nighttime respectively.

The above two features (i.e., CC and CT ) are used to
classify the users into different clusters where users in the
same cluster are expected to have similar check-in behaviors.
We denote such clusters of users as H1, H2, ...,Hk, ...,HY .
For user Nj , we use %j to represent which cluster it belongs
to (i.e., %j = k if Nj ∈ Hk).

Finally, we formulate our user home location inference
problem as follows: given the Venue-User Matrix MN , Time
Length Vector TLJ , Check-Category Matrix CC and Check-
Time Matrix CT , our goal is to accurately estimate the home
locations of all local users in a city who have check-in trace
on LBSNs. We define ωj and δj to represent the latitude and
longitude of user Nj’s home location. Formally, our goal can
be given as follows:

(ωj , δj |MN,TL,CC,CT ) ∀j, 1 ≤ j ≤ J (6)

We summarize the defined notations in Table I.

Table I
SUMMARY OF NOTATIONS

Symbol Interpretation

M set of venues
N set of users
MN venue-user matrix
TL time length vector
CC check-category matrix
CT check-time matrix

III. THE WHERE ARE YOU FROM (WAYF) FRAMEWORK

In this section, we present our solution Where Are You From
(WAYF) scheme to infer people’s home locations by exploring
the localness of users and dependency between users based
on their check-in behavior. The WAYF scheme consists of
two major components: Local People Identification and Home
Location Inference. We will explain these two components in
detail in the following subsections.

A. Local People Identification
In this subsection, we present the user localness identifica-

tion scheme: Local People Identification (LPI). The objective
of the LPI scheme is to identify local users from non-local
ones by using the MN matrix, TL vector, CC matrix and
CT matrix.

Based on the terms and variables we defined in Section II,
the likelihood function F = (Ω; Γ,Φ) for LPI is as follows:

L(Ω; Γ,Φ)

= p(Γ,Φ|Ω)

=

J∏
j=1

[ I∏
i=1

B∏
ζ=1

Υi,j,ζ · p(Φj)
]
· p(Φj |Γj ,Ω) (7)

where Ω can be given as:

Ω = (ϕi,ζ , ϕ2,ζ , ..., ϕI,ζ ;φ1,ζ , φ2,ζ , ..., φI,ζ ; c) (8)

Γ is the observed data (i.e., Matrix MN and Vector TL).
Φ represents a set of latent variables that indicate whether a
user is local or not. More specially, we define a corresponding
variable Φj for each user Nj such that Φj = 1 if Nj is local
and Φj = 0 otherwise. Additionally, Υi,j,ζ and p(Φj) are
defined in Equation (9) and (10).

Υi,j,ζ =



ϕi,ζ MN j
i = 1, hj = ζ,Φj = 1

1−
B∑
ζ=1

ϕi,ζ MN j
i = 0, hj = ζ,Φj = 1

φ1,ζ MN j
i = 1, hj = ζ,Φj = 0

1−
B∑
ζ=1

φ1,ζ MN j
i = 0, hj = ζ,Φj = 0

(9)

Φ(n, j) =


c MN j

i = 1, hj = ζ,Φj = 1

c MN j
i = 0, hj = ζ,Φj = 1

1− c MN j
i = 1, hj = ζ,Φj = 0

1− c MN j
i = 0, hj = ζ,Φj = 0

(10)

Given the above formulated likelihood function, we can
derive E and M steps of the proposed LPI scheme. First, the
E-step is derived as follows:

Q(Ω|Ω(n))

= EΦ||Γ,Ω(n) [logL(Ω; Γ,Φ)]

=

J∑
j=1

Φ(n, j)×
I∑
i=1

(logΥi,j,ζ + logp(Φj)) (11)



Notation Solution

ϕ∗i,ζ (Σy∈SWx,d
p(Φj = 1|Γj ,Ω(n)))/(ΣYy=1p(Φj = 1|Γj ,Ω(n)))

φ∗i,ζ (Σy∈SWx,d
(1− p(Φj = 1|Γj ,Ω(n))))/(ΣYy=1(1− p(Φj = 1|Γj ,Ω(n))))

c∗ (ΣYy=1p(Φj = 1|Γj ,Ω(n)))/(J)
Table II

SOLUTIONS OF LPI SCHEME

where Φ(n, j) is defined in Equation (12) and n is the iteration
index.

p(Φj) =


p(Nj = 1|Γj ,Ω(n)) MN j

i = 1, hj = ζ,Φj = 1

p(Nj = 1|Γj ,Ω(n)) MN j
i = 0, hj = ζ,Φj = 1

p(Nj = 0|Γj ,Ω(n)) MN j
i = 1, hj = ζ,Φj = 0

p(Nj = 0|Γj ,Ω(n)) MN j
i = 0, hj = ζ,Φj = 0

(12)

For the M-step, in order to get the optimal Ω∗ that maxi-
mizes the Q function, we set partial derivatives of Q(Ω|Ω(n))
with respect to Ω to 0. We can get the optimal estimation of the
parameters for the next iteration (i.e., (ϕi,ζ)

(n+1), (φi,ζ)
(n+1)

and (c)(n+1)) in Table II. Di,ζ is the set of users who visit the
venue Mi and their check-in points in a city last for ζ days

We can further optimize the user localness identification
process by leveraging both dependency between users and the
Cramer-Rao lower bounds (CRLB) of estimation results. In
particular, we identify the users with inaccurate estimation
results by computing the CRLBs and improve inaccurate esti-
mations by leveraging the home locations of their dependent
users based on their check-in behaviors.

We first cluster dependent users based on the features in
Section II (i.e., CC matrix and CT matrix). In particular,
we define a vector sj where the l-th entry of sj represents
the probability of user Nj has check-in points at venues with
category l. We draw sj from a Dirichlet(ϑ) where ϑ is the
Dirichlet parameter for cluster %j . Similarity, we represent the
user Nj’s temporal check-in behavior as a vector tj drawn
from a Dirichlet ιj . Formally, they can be represented as:

sj |% = Dirichlet(ϑk); tj |% = Dirichlet(ιk) (13)

We define CCk and CTk to represent the sub-matrices
of Check-Category Matrix CC and Check-Time matrix CT
which include the users in the k-th cluster. We further define
the set of users in the k-th cluster as Uk. Based on the defined
terms and variables, we define the likelihood function as:

p(CCk, CTk|ϑk, ιk)

=
∏
j∈Uk

p(CCk|ϑk)p(CTk|ιk) (14)

Using the formulated likelihood functions, we can derive the
cluster assignment for each user. We then update hyperparam-
eters of each cluster (i.e., ϑ and ι) iteratively and the cluster
assignment for each user (i.e., %j) using the Bayesian inference
model until the values of the hyperparameters converge. To
update cluster hyperparameters, we maximize the likelihood

function p(CCk, CTk|ϑk, ιk) with respect to ϑ and ι re-
spectively. Particularly, we compute the maximum likelihood
updates for ϑk given the CCk of users in the k-th cluster.
Similarly, we compute the maximum likelihood updates for
ιk given the CTk of users in the k-th cluster. The maximum
can be computed via the fixed-point iteration algorithm [27].
The process of updating cluster hyperparameters is given as
follows:

ϑ∗k,l = ϑk,l

∑
j∈Uk

CCj,l

CCj,l−1+ϑk,l∑
j∈Uk

CCj

CCj−1+
∑L

l′=1
ϑk,l′

ι∗k,d = ηk,d

∑
j∈Uk

CTj,d

CTj,d−1+ιk,d∑
j∈Uk

CTj

CTj−1+
∑2

d′=1
ιk,d′

(15)

Based on the updates of cluster hyperparamters, we ad-
just the cluster assignment %j by maximizing the likelihood
function. In particular, maximizing the likelihood function
p(CCk, CTk|%j = k) is given as follows:

%∗j = argmaxkp(CCj |%j = k)p(CTj |%j = k) (16)

The CRLB is defined as the inverse of Fisher information:
CRLB = E−1, where E is the Fisher information of
the estimation parameter. Using the likelihood function from
Equation (7) and the results of estimation parameters from
Table II, we can compute CRLB to quantify the accuracy of
our solution using a similar method we developed in [39].
Using the computed CRLB, we can compute the confidence
interval ai on the local attractiveness estimation of each venue.
We further define Qj to represent the estimation accuracy of
a user’s localness. Given the Venue-User matrix MN , Qj can

be computed as: Qj = 1−
∑

i∈MNj
ai

|MNj | where MNj is the set
of venues user Nj has check-in points and ai is the derived
confidence interval on the local attractiveness estimation of
venue Mi.

We optimize the user’s localness identification as follows:
if a user Nj’s localness estimation accuracy Qj is less than a
certain threshold and have dependency with others, we com-
pute an optimized localness of Nj by leveraging the clustering
results derived earlier. In particular, based on the above defi-
nitions, we define users within the same cluster as dependent
users. For the user Nj , we use Dej to represent the set of
her/his dependent users in the same cluster. Finally, we define
the objective function as: f∗ =

∑
j∈N

∑
j′∈Dej |Φ

∗
j − Φj′ | ·

w(Nj , Nj′), where w(Nj , Nj′) is the dependency strength
between user Nj and Nj′ , which is computed as the number



of common venues the two users visited in our model. This
problem can be solved using weighted median algorithm [7].

B. User Home Location Estimation

Finally, we formulate the problem of user’s home lo-
cation estimation as an optimization problem by incorpo-
rating the users’ localness and dependency obtained from
the previous subsection. In particular, we can estimate the
home location of each identified local user by leveraging
the home locations of his/her dependent users in the same
dependent group (i.e., cluster). We define a distance function
dis(Nj , Nj′) to represent the geographical distance between
the home location of user Nj and user Nj′ . We define
the objective function of our estimation problem as follows:
fhl =

∑
j∈N

∑
j′∈Dej dis(Nj , Nj′) · w(Nj , Nj′). The goal

is to find the home location (ωj , δj) for each user in M
that minimizes the defined objective function. To simplify the
notations used in the distance function dis(Nj , Nj′) based on
cartesian coordinate system [8], we define a few additional
notations:

x = sin(
π

2
− ω)cos(δ) = cos(ω)cos(δ)

y = sin(
π

2
− ω)sin(δ) = cos(ω)cos(δ)

z = cos(
π

2
− ω) = sin(ω) (17)

Using the defined terms, we can convert our problem to the
following convex optimization one:

min fhl(x, y, z) =∑
j′∈Dej

[(xj′ − x)2 + (yj′ − y)2 + (zj′ − z)2]

s.t. x2 + y2 + z2 = 1 (18)

The convex optimization in Equation (17) can be rewritten
as:

min fhl(x, y, z) = 2
∑

j′∈Dej

wj′ − 2
∑

j′∈Dej

wj′x−

2
∑

j′∈Dej

wj′y − 2
∑

j′∈Dej

wj′z (19)

We note that fhl(x, y, z) is a linear function and the minimum
value can be obtained at the extreme point on the sphere
x2 +y2 + z2 = 1. Therefore, we can obtain the corresponding
(ωj , δj) that minimizes fhl based on the derivations from
Equation (17).

IV. EVALUATION

In this section, we evaluate the performance of the WAYF
(Where Are You From) scheme using three real-world
data traces collected from a social media platform (i.e.,
Foursquare). We demonstrate the effectiveness of our proposed
scheme on these data traces and compare the performance
of our scheme to the state-of-the-art baselines. In the rest of
this section, we first present the experiment settings and data
pre-processing steps that were used to prepare the data for

performance validation. Then we introduce the state-of-the-art
techniques and evaluation metrics we used in our experiments.
Finally, we present the evaluation results that demonstrate
the WAYF scheme can infer the home location of users more
accurately than the compared baselines.

A. Experimental Setups and Evaluation Metrics

1) Data Trace Statistics: In this paper, we evaluate
WAYF scheme on three real-world data traces collected from
Foursquare. In Foursquare, users can easily share their location
information (i.e., check-in points) at different venues they
visit in a city. Each check-in point is formatted as: (user
ID, venue ID, timestamp). The data traces we collected also
contains home location information of users, which serves as
the ground truth to decide the home location of users in our
evaluation. One should also note that such ground truth home
location information is not globally available for all users in
all cities [33], which is the main motivation to develop WAYF
scheme to infer the home location of people from their check-
in points. In the evaluation, we selected the data traces from
three cities in U.S where the ground truth information is
available: Boston, Chicago and Washington D.C.. Figure 2
shows the heat map of venues in three cities. The statistics of
these traces are summarized in Table III.

2) Data Pre-Processing: To evaluate our methods in real
world settings, we went through the following data pre-
processing steps to generate the inputs for the WAYF scheme:
(i) Venue-User Matrix (MN Matrix) Generation; (iii) Time
Lenght Vector (TL Vector) Generation; Check-Category Ma-
trix (CC Matrix) Generation and Check-Time Matrix (CT
Matrix) Generation. They are summarized as follows:
• Venue-User Matrix Generation: We generate the MN

Matrix by associating each venue with the users who
visited this venue (i.e., the users who had check-in points
at the venue). In particular, if user Nj visits venue Mi

in the data trace, we set the element MN j
i in MN to 1

and 0 otherwise.
• Time Length Vector Generation: For simplicity, we gen-

erate a binary time vector T based on the time length of
user’s check-in points. In particular, if the time length of
user’s check-in points (i.e., the time difference between
the first and last check-in points) is larger than a certain
threshold, we set the corresponding element hj in vector
TL as 1. Otherwise, we set the hj as 0.

• Check-Category Matrix Generation: We generate the CC
matrix by counting the number of check-in points of users
on different categories of venues in the city. In particular,
we set the element CClj in matrix CC as the number of
check-in points of user Nj on venues with the category
of l.

• Check-Time Matrix Generation: We generate the CT
matrix by counting the number of check-in points of users
at different time of a day. In particular, we set the element
CT dj in matrix CT as the number of check-in points of
user Nj during daytime (i.e., d = 1) or nighttime (i.e.,
d = 2).
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Figure 2. Heat Maps of Venues in Three Cities

Table III
DATA TRACES STATISTICS

Data Trace Boston Chicago Washington D.C

Number of Users 12,804 31,965 17,231
Number of Venues 1,478 2,529 1,932
Number of Check-ins 18,296 48,605 25,722

After the above pre-processing steps, we generate all the
inputs (i.e., MN Matrix, TL Vector, CC Matrix and CT
Matrix) for the WAYF scheme.

3) Evaluation Metric: In our evaluation, we define two
metrics to evaluate the performance of the WAYF scheme.
The first metric is Average Error Distance for Top-k% Users
(AED@Top-k%). In particular, we denote gj and ĝj as the user
Nj’s real and estimated home location respectively. dis(gj , ĝj)
is defined as the distance between gj and ĝj . The Top-k% users
are the top k% users who are ranked by dis(gj , ĝj). In our
experiments, we evaluate the performance of all schemes by
varying the value of k%. A low AED-Top-k% value means
that the approach can geo-locate users close to their real home
location on average for the Top-k% users. The second metric
is Accuracy within M miles (ACC@M) which we borrowed
from [9]. Particularly, ACC@M is used to measure the
fraction of users who can be accurately geo-located within M
miles from her/his real home location. In our experiment, we
evaluate the performance of different techniques by varying the
values of M . A high ACC@M value means that the approach
can geo-locate a larger fraction of users within a given error
bound. The mathematical definitions of the above metrics (i.e.,
AED-Top-k% and ACC@M ) are given in Table IV.

Table IV
METRIC DEFINITIONS

Metric Definition

AED@Top-k%

∑
j∈N dis(gj ,ĝl)|Rank(j)<k%

|N|

ACC@M
{j|j∈N∧dis(gj ,ĝj)<M}

|N|

B. Performance Validation

In this subsection, we evaluate the performance of the
proposed WAYF scheme and compare it to the state-of-the-
art user geo-locating techniques that include:
• HLI: it proposes a machine learning approach that locate

people’s home location by integrating the spatial and
temporal features of people’s trajectories [14].

• MLP: it proposes a generative probabilistic approach that
infers a user’s locations by leveraging the home locations
of the user’s online friends [23].

• UHLI: it develops an unsupervised approach to solve
the problem of inferring the home locations of people by
exploring the localness of users and influence scope of
venues [19].

• FM: it infers a user’s location by utilizing the home
locations of the people that visit similar places as the
user [5].

• UDI: it proposes a unified framework for profiling
users’ home locations by exploring both social network
between users and influence probabilities of different
locations [24].

• FL: it proposes a network-based approach that leverages
the evidence of social tie strength between users [26].

• OAlgo: it presents a hierarchical ensemble algorithm for
inferring the home location of users by exploring the
tweeting behavior of users [25].

• Aver: it simply computes the home location of a user
by taking the average of the coordinates of all places the
user visited.

In our evaluation, we evaluate the performance of above
schemes using AED-Top-k% and ACC@M metrics we intro-
duced. The results of AED-Top-k% on Boston data trace are
shown in Table V. We observe that the proposed WAYF scheme



Table V
ESTIMATION ACCURACY ON BOSTON DATA TRACE IN TERMS OF

AED@TOP-K%

Top-k% Accurate Geo-locating Users

Alg 20% 40% 60% 80% 100%

WAYF 0.43 0.68 1.39 2.81 20.09
HLI 0.63 1.25 2.03 7.66 79.99
MLP 0.54 1.05 1.92 10.22 86.89
UHLI 0.50 1.02 1.52 2.93 25.49
FM 0.62 1.22 2.89 38.09 131.51
UDI 0.67 1.30 2.11 8.22 80.77
FL 0.61 1.19 2.67 9.13 80.81
OAlgo 0.67 1.30 2.09 7.64 79.52
Aver 0.56 1.05 2.00 15.83 224.66

Table VI
ESTIMATION ACCURACY ON BOSTON DATA TRACE IN TERMS OF

ACC@Y MILES

M (mile)

Alg 1 3 5 7 9

WAYF 0.240 0.564 0.663 0.724 0.754
HLI 0.168 0.462 0.583 0.615 0.643
MLP 0.202 0.474 0.569 0.602 0.631
UHLI 0.221 0.557 0.673 0.713 0.743
FM 0.177 0.425 0.501 0.532 0.558
UDI 0.161 0.424 0.579 0.614 0.644
FL 0.181 0.433 0.508 0.540 0.566
OAlgo 0.155 0.459 0.579 0.612 0.640
Aver 0.203 0.477 0.559 0.592 0.619

outperforms the compared baselines over different values of
k%. Specifically, it has the smallest average error distance on
the estimation of users’ home location. The Aver heuristic that
takes the average coordinates of all venues that a user visited
to estimate the user location failed to provide an accurate
estimation (i.e., average error of users is 224 miles).

Furthermore, we also evaluate the estimation performance
of all schemes in terms of ACC@M . The evaluation results
on Boston data trace are shown in Table VI. We observe that
the proposed WAYF scheme also outperforms the compared
baselines over most values of M . In particular, 24% and 56%
of users can be geo-located within 1 and 3 miles of their real
home locations respectively.

We also evaluate the estimation performance of all schemes
in terms of AED-Top-k% and ACC@M on Chicago and
Washington D.C data trace. The results on Chicago data trace
in terms of AED-Top-k% and ACC@M are shown in Ta-
ble VII and Table VIII respectively. The results on Washington
D.C data trace in terms of AED-Top-k% and ACC@M are
shown in Table IX and Table X respectively. Similar results
are observed in those tables. The performance improvements
of WAYF are achieved by explicitly incorporating the localness
of users and dependency between users based on their check-
in behaviors from crowdsourcing data into an optimal home
location estimation solution.

The above evaluation results from real world data traces
demonstrate that the proposed WAYF scheme can effectively

Table VII
ESTIMATION ACCURACY ON CHICAGO DATA TRACE IN TERMS OF

AED@TOP-K%

Top-k% Accurate Geo-locating Users

Algorithm 20% 40% 60% 80% 100%

WAYF 0.46 0.83 1.39 2.77 9.81
HLI 0.77 1.68 2.98 5.22 54.32
MLP 1.10 2.11 3.30 4.79 64.79
UHLI 0.67 1.11 1.79 2.77 29.59
FM 1.45 2.39 3.91 8.96 72.14
UDI 1.28 2.20 3.42 8.74 98.98
FL 1.42 2.32 3.41 4.67 53.77
OAlgo 0.75 1.61 2.97 5.30 54.42
Aver 1.45 2.38 3.50 4.92 151.16

Table VIII
ESTIMATION ACCURACY ON CHICAGO DATA TRACE IN TERMS OF

ACC@M MILES

M (mile)

Algorithm 1 3 5 7 9

WAYF 0.232 0.492 0.688 0.760 0.789
HLI 0.145 0.332 0.494 0.565 0.681
MLP 0.083 0.295 0.447 0.606 0.714
UHLI 0.190 0.482 0.681 0.766 0.808
FM 0.051 0.276 0.424 0.512 0.577
UDI 0.064 0.294 0.451 0.569 0.658
FL 0.052 0.284 0.451 0.624 0.737
OAlgo 0.151 0.336 0.495 0.554 0.674
Aver 0.051 0.275 0.437 0.605 0.715

Table IX
ESTIMATION ACCURACY ON WASHINGTON D.C DATA TRACE IN TERMS

OF AED@TOP-K%

Top-k% Accurate Geo-locating Users

Algorithm 20% 40% 60% 80% 100%

WAYF 0.46 0.72 1.08 2.49 16.79
HLI 0.80 1.37 2.29 9.33 82.97
MLP 0.75 1.22 2.28 15.19 93.83
UHLI 0.66 0.97 1.42 2.43 21.71
FM 0.75 1.15 2.04 9.69 84.43
UDI 0.73 1.14 2.05 10.54 88.93
FL 0.72 1.16 2.13 14.64 93.34
OAlgo 0.79 1.32 2.24 9.29 82.93
Aver 10.78 1.22 2.27 20.01 259.86

infer the home locations of users compared to the state-of-the-
art techniques.

V. RELATED WORK

Crowdsourcing has emerged as a new application paradigm
of collecting data measurements about the physical world
from a crowd of humans or devices on their behalf [3], [1].
This emerging paradigm is now widely used in many real-
world applications and systems [41], [20], [18], [37], [36].
Recent research work starts to address new challenges in
crowdsourcing applications such as incentive mechanism de-
sign [43] and privacy protection [30] and data reliability [38],
[15]. An emerging problem of user profile inference arises in
crowdsourcing applications due to the proliferation of mobile



Table X
ESTIMATION ACCURACY ON WASHINGTON D.C DATA TRACE IN TERMS

OF ACC@M MILES

M (mile)

Algorithm 1 3 5 7 9

WAYF 0.238 0.563 0.676 0.774 0.795
HLI 0.142 0.455 0.549 0.621 0.655
MLP 0.150 0.426 0.539 0.599 0.627
UHLI 0.206 0.560 0.696 0.765 0.794
FM 0.160 0.454 0.569 0.632 0.661
UDI 0.161 0.451 0.566 0.629 0.658
FL 0.159 0.441 0.555 0.614 0.643
OAlgo 0.147 0.456 0.551 0.623 0.657
Aver 0.149 0.430 0.538 0.598 0.625

sensing devices (e.g., smartphones) and the rapid growth
of location-based social network services (e.g., Foursquare,
Google Places, Gowalla) [10]. These services empower com-
mon individuals to easily share their location and visiting
information at scale. To address this emerging problem, this
paper develops a novel scheme to accurately infer the home
locations of people by using sparse and noisy check-in points
contributed by the crowd.

Previous work has made significant progress on user pro-
filing [28], [2], [22]. For example, Mislove et al. proposed a
community detection approach to infer the missing attributes
of a user on Facebook from the attributes of his/her friends in
the network [28]. Abel et al. developed a semantic approach to
construct the user’s profile on Twitter by exploiting the links
between the user’s tweets and related news articles [2]. Li
et al. studied the problem of user profiling by capturing the
correlation between attributes and social connections of the
user’s ego networks [22]. However, none of these techniques
can be directly used to infer the home location of people in
a city because i) people may have social connections with
friends living far away; ii) people may also report news/events
that are not local to the city they live. In this paper, we solve
the problem of inferring the home location of users without the
requirement on the knowledge of the user’s social connections
and content (e.g., tweets, blogs) they generate.

In addition, our work is also related to user behavior
understanding based on their home locations. For example,
a content-based approach was proposed by Cheng et al. [9]
to identify Twitter users’ home cities and their movement
patterns. Specifically, they extract a set of words which are
related to a city (e.g., New York) and use those words as
features to classify users to different cities. Home location was
also used to model people’s living conditions and lifestyles
in [32]. Furthermore, user’s home location has been considered
as a key factor to compute the distance between social users in
a pairwise fashion [35], [34]. Our work is complementary to
the above works in the sense that more accurate estimations of
users’ home location normally lead to a better understanding
of user’s behavior and movement patterns in a city.

Our work is closely related to the works that directly address
the user’s location inference problem [14], [23], [5], [24],

[26], [25], [19]. In particular, Backstrom et al. estimated a
user’s location by exploring both the geographic and social
relationship between users [5]. Li et al. [24] developed a sys-
tem to infer a user’s location by integrating network and user-
centric data via a unified influence model. They further ex-
tended their model to handle cases where users have multiple
home locations [23]. McGee [26] proposed a network-based
approach for location estimation by correlating the social tie
strength with physical proximity. Hu et al. [14] designed a
machine learning method to capture the inherent properties of
users’ homes by exploring their mobility features. Mahmud
et al. [25] proposed a hierarchical ensemble algorithm to
predict the home location of users by leveraging the domain
knowledge and advanced classifications. Huang et al. studied
the problem of user’s location inference using an unsupervised
approach that considers the localness of users and influence
scope of venues [19]. In this work, we develop an semi-
supervised framework to address the problem of profiling the
home locations of local users on LBSNs by leveraging both
the localness of users and the dependency between users based
on their check-in behaviors.

Maximum likelihood estimation (MLE) framework has been
widely used in the domain of sensor networks [40], [29], [31],
[16], [42]. For example, Pereira et al. proposed a diffusion-
based MLE algorithm for distributed estimation in WSN in
the presence of noisy measurements and data faults [31]. Eric
et al. deisgned a MLE based approach to aggregate the signals
from noisy measurements at remote sensor nodes to a fusion
center without any inter-sensor collaborations [29]. Wang et.
al [40] developed an estimation theoretical framework to solve
the truth discovery problem in social sensing applications. In
contrast, this paper studied a new problem of inferring the
user’s home location using sparse and noisy crowdsourcing
data.

VI. CONCLUSION

This paper proposes a semi-supervised approach to infer
the home locations of crowd sensors by exploring the sparse
and noisy crowdsourcing data from location based social
networks (LBSN). In particular, we develop the Where Are
You From (WAYF) scheme to accurately estimate users’ home
locations by explicitly exploring the localness of users and the
dependency between users based on their check-in behaviors.
We perform extensive experiments to evaluate the performance
of our new scheme using the real-world datasets collected
from Foursquare. The evaluation results demonstrated the
effectiveness of our new scheme in profiling the home location
of users. The results of our paper are important because they
can directly contribute to crowd data source profiling in
participatory sensing and other crowdsourcing applications.
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