SocialDrone: An Integrated Social Media and Drone
Sensing System for Reliable Disaster Response

Abstract—Social media sensing has emerged as a new disaster
response application paradigm to collect real-time observations
from online social media users about the disaster status. Due
to the noisy nature of social media data, the task of identifying
trustworthy information (referred to as ‘“truth discovery”) has
been a crucial task in social media sensing. However, existing
truth discovery solutions often fall short of providing accurate
results in disaster response applications due to the spread of
misinformation and difficulty of an efficient verification in such
scenarios. In this paper, we present SocialDrone, a novel closed-
loop social-physical active sensing framework that integrates
social media and unmanned aerial vehicles (UAVs) for reliable
disaster response applications. In SocialDrone, signals emitted
from the social media are distilled to drive the drones to target
areas to verify the emergency events. The verification results
are then taken back to improve the sensing and distillation
process on social media. The SocialDrone framework introduces
several unique challenges: i) how to drive the drones using the
unreliable social media signals? ii) How to ensure the system
is adaptive to the high dynamics from both the physical world
and social media? iii) How to incorporate real-world constraints
(e.g., the deadlines of events, limited number of drones) into
the framework? The SocialDrone addresses these challenges by
building a novel integrated social-physical sensing system that
leverages techniques from game theory, constrained optimiza-
tion, and reinforcement learning. The evaluation results on a
real-world disaster response application show that SocialDrone
significantly outperforms state-of-the-art truth discovery schemes
and drone-only solutions by providing more rapid and accurate
disaster response. To the best of our knowledge, SocialDrone is
the first solution that integrates social media sensing with drone-
based physical sensing systems for disaster response applications.

I. INTRODUCTION

Social media sensing has recently emerged as a new applica-
tion paradigm where social media posts from online users are
parsed and analyzed to report the status of the physical world
[1]. A critical application enabled by social media sensing
is disaster response. During a disaster event, social media
platforms often provide real-time and valuable information
of emergency events. Figure 1 illustrates an example of two
geo-tagged tweets posted during the 2018 California Camp
Fire, one of which talks about a road closure and the other
about a missing person. An important challenge of using social
media for disaster response is truth discovery where the goal
is to identify trustworthy information contributed by massive
unvetted sources from online social media [2]. While great
efforts have been made on developing reliable truth discov-
ery solutions [3]-[6], several limitations still prevent these
solutions from being applied in disaster response applications.
In particular, the truth discovery algorithms are known to

underperform in the presence of widespread misinformation,
which is common during disaster scenarios [7]. The key to
address this issue is to acquire ground truth to validate the
source reliability and event correctness. However, such ground
truth requires a significant amount of manual effort and is
delay prone during the real-world disaster events [8].
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Figure 1. Tweets posted during the 2018 California Camp Fire

This paper focuses on a new disaster response applica-
tion where the social media (e.g., Twitter, Instagram) and
unmanned aerial vehicles (UAVs) are used together to obtain
real-time situation awareness in the aftermath of a disaster. The
mobility and agility of UAVs allow them to be quickly sent
to the disaster events to collect real-time evidence and verify
whether the events are actually happening before sending out
rescue teams [9]. The reliable and high quality measurements
provided by the drones naturally complement the uncertain
estimation of the social media sensing. In fact, the drones can
verify various disaster events (e.g., fires, floods, leakage of
toxic chemicals) with high confidence by leveraging dedicated
sensors and advanced machine learning techniques [10]-[12].
However, one factor that limits the feasibility of UAVs is that
they require a great degree of manual inputs from human op-
erators to be narrowed-down to the location of disaster events.
This may give rise to delayed responses that are unacceptable
in disaster response applications [13]. Furthermore, a drone
is an expensive resource that has to be utilized sparingly in
the physical world. It is not practical to launch an arbitrary
number of drones for “scouting” a large area. In contrast to
UAVs, the outreach of social media sensing is far greater (e.g.,
anyone possessing a portable device with Internet connectivity
can report an incident during a disaster).

We pose a challenging research question in this paper:
could the information from social media be used to drive
drones to provide faster and more effective responses during
the course of a disaster? For example, if the tweets shown
in Figure 1 could be used to drive a set of drones, it could
potentially expedite the search and rescue operations of miss-



ing people and identify the condition of road closures during
the Camp Fire event. However, a few important technical
challenges need to be carefully addressed before the social
media sensing and drone system can act in tandem.

The first challenge lies in leveraging the noisy and uncertain
“signals” emitted from the social media to drive the drones to
the desirable locations. While state-of-the-art truth discovery
solutions have decent performance in identifying credible dis-
aster events, they are only as good as the information presented
on social media. None of the current solutions integrate with
any physical component like drones to actively verify the
information they estimate and improve the estimation accuracy
[5], [14]. Therefore, it remains to be an open question on
how to leverage the unreliable social media signals to reliably
control the drones for effective disaster response.

The second challenge lies in developing a closed-loop
system that seamlessly integrates the social media sensing and
the drone sensing paradigms. The design of such a closed-loop
system requires a careful control of the interactions between
the social and physical worlds, both of which are highly dy-
namic. For example, the number of users on social media and
their reliability may change drastically over time [3]. Similarly,
the events in the physical world occur at different locations and
the truthfulness of the events may also evolve [6]. It entails a
tight integration between the social media sensing and drone
system by using the social media signals to drive the drones
and afterwards utilizing the obtained information from drones
to improve the performance of social media sensing. This
closed-loop challenge at the intersection of cyber, physical and
social spaces has not been addressed in the current literature
from both social media and drone systems.

The last challenge is the difficulty imposed by several
constraints from the physical world (e.g., the resource con-
straints of the drones and the deadline constraints imposed
by the events). In particular, we assume only a finite number
of drones can be utilized for a particular disaster response
application at any given time. Furthermore, we also assume
the identified events in a disaster have certain deadlines that
reflect their urgency, after which it may not be viable to verify
them. For instance, if there is a report of a person being injured
during a disaster situation, that event often has a tight deadline.
We note that it is a known NP-hard problem of finding an
optimal allocation strategy to assign a limited number of
drones to events with different deadlines [15], [16]. However,
our problem is even more challenging because we also need
to consider the dynamics of the social and the physical worlds
as well as the interactions between them.

In this paper, we develop a closed-loop active sensing
framework, SocialDrone (Figure 2), that integrates the social
media sensing with the drones for reliable disaster response.
Our system consists of a new game-theoretic drone task
allocation module to selectively choose the desired locations
to send to drones and verify the event information extracted
from unreliable social media data. A path planning module is
developed to ensure the flight trajectory of the drones meet
deadline constraints of the target events. Finally, we design
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Figure 2. An overview of the SocialDrone framework
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a closed-loop source selection module that leverages the data
collected from drones to dynamically filter out unreliable users
on social media to calibrate the accuracy of the social media
sensing and eventually improve the effectiveness of the disaster
response application.

To the best of our knowledge, the SocialDrone framework
is the first solution that integrates social media sensing with
drone-based sensing for reliable disaster response applications.
We evaluated our framework in comparison to both social
media based and drone based disaster response systems on
a real world dataset collected from Twitter during a natural
disaster: California Camp Fire in November 2018. The results
show that SocialDrone significantly outperforms the compared
baselines in providing more accurate (15% increase in F1-
score) and timely information (10% increase in deadline hit
rate) during a disaster event.

II. RELATED WORK
A. Truth Discovery in Social Media Sensing

A key challenge in social media sensing applications is the
data reliability issue [1]. Various truth discovery models have
been developed to address this challenge. For example, Yin
et al. developed Truth Finder, a probabilistic algorithm using
iterative weight updates [4]. Wang et al. proposed a scheme
that jointly estimates source reliability and claim correctness
using the maximum-likelihood estimation approach [5]. Li e?
al. proposed a confidence-aware truth discovery method to au-
tomatically detect truths from data with long-tail phenomenon
[17]. A comprehensive survey of truth discovery schemes is
presented in [18]. One major limitation of these truth discovery
schemes is that they solely rely on the social media data
that tend to be noisy, sparse and unreliable. The uncertain
outputs of these solutions can lead to significant false alarms
in disaster response and mislead the rescue teams to areas
where no emergency exists [7]. In contrast, our SocialDrone
framework integrates the social media with drones to address
the data reliability challenge of social media sensing.

B. Disaster Response with Physical Sensing

Disaster response is a crucial application to ensure immedi-
ate resolution to emergent and hazardous events [19]. A critical
step in disaster response is to identify the area where a disaster
has taken place and determine the severity of the damage
caused by a disaster. Several disaster assessment systems have



been built that make use of drones flying to the location
of disaster events. For example, Zander et al. built a smart
emergency response system in which survivors tag themselves
using their handheld devices and rescuers dispatch drones to
find them [20]. Alazawi et al. proposed a disaster management
system that utilizes vehicular networks in urban environments
to gather and distribute the information in the aftermath of a
disaster [21]. However, the above approaches primarily rely on
the signals from human operators, which could be both slow
and limited in scope. Moreover, the chance of discovering an
event is subject to the drones patrolling in close vicinity of the
events, which may be unlikely when the number of drones is
limited in an application. In contrast, SocialDrone framework
automatically drives the drones to the desirable locations and
recovers the truthful state of the events based on the signals
emitted from social media.

C. Active Learning

In an active learning framework, a learning algorithm ac-
tively obtains labels of the selected instances from domain
experts [22]. For example, Wang et al. developed an active
learning framework for crowdsensing-based air quality moni-
toring where the application leverages a small subset of avail-
able workers to selectively collect air quality measurements of
assigned areas [23]. Zhang et al. developed an adaptive sam-
pling based active learning framework to selectively choose
most meaningful social media feeds to perform online topic
detection [24]. Ambati et al. applied active learning techniques
to dynamically query the crowd for annotations of texts and
use the annotations to train an Al model to translate low
resource languages [25]. Our work is clearly different from
existing work in two aspects: 1) we are the first that use drones
to do the active sensing and consider the physical constraints
and costs of using drones; 2) we designed a novel source
selection mechanism dedicated to improving the performance
of truth discovery algorithms in social media sensing.

III. PROBLEM FORMULATION

In this section, we first present the basic terms and as-
sumptions of our model and then define the objective of our
problem. In a disaster response application, we consider a
physical region of interest with a specific duration of sensing.
To access the scope of the sensing process at a reasonable
granularity, we divide the sensing region into distinct sensing
cells that are clustered into a sensing grid and distribute the
duration of sensing across sensing cycles.

DEFINITION 1. Sensing Cycles: We divide the duration
of an application into L fixed intervals called sensing cycles,
where [ € [1, L] denotes the [** sensing cycle.

In our problem, we consider a scenario where a group of
M social media users report a collection of N; distinct events,
E=(Ei1, Bz, ..., EN,), at sensing cycle [. The events can
be any significant occurrence taking place in the course of a
natural or man-made disaster. For example, an event can be
a person trapped under a tree log, a road blocked due to an

accident, a suspect evading from a crime scene, or a possible
bomb. We define an event £, to be a binary variable:

DEFINITION 2. Event £
1, if reported event E, ,, exists

E =
l,p {07

We also denote El;, to indicate the estimated truth of event
E; , by our SocialDrone system.
We formally define a task as follows:

DEFINITION 3. The Task for Drone: A task for drones at
a sensing cycle refers to the location of an event where the
drone should be sent to.

)

if reported event E ;, does not exist

We define the data from the social media (e.g., tweets from
Twitter) as follows:

DEFINITION 4. Social Media Data S: the social media
posts that report events in the physical world during a disaster.
An example of a social media report is shown in Figure 1.

We also define a set of G drones, D = (D1, Do, ..., D) that
will be triggered and dispatched to the cells of interest after
analyzing the events obtained from the social media. Figure 3
presents an illustrative example of the concepts defined above.
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Figure 3. Snapshot of the sensing grid across subsequent sensing cycles.

When [ =1, Ey1, E1,2, ... indicate the events occurring in sensing cycle 1.
D1, Da, ... denote the present locations of the drones.

We further define a few key attributes of the event Fj ;.

DEFINITION 5. Event Deadline J; ), for event F;,: an
event is assumed to have a deadline based on its urgency. For
example, the event of an injured person will typically have a
tighter deadline than the event of a road closure.

The event deadline is a critical constraint in our problem,
i.e., the drones must reach the event location before the
deadline expires in order to verify whether the event actually
happens. We assume that the deadlines of events are shorter
than the duration of the sensing cycle. For the event with
a longer deadline than the sensing cycle, we split the event
into multiple events. Each of the resulting events will have
a deadline shorter than the sensing cycle. The split events
also inherit the priority from the original event to avoid the
potential problem of “priority inversion” [26].

Using the above definitions, we therefore define the goal
of the SocialDrone framework. Given the social media data
inputs S, a set of drones D, and corresponding deadlines for
events ¢; ,, the objective of the SocialDrone framework is to
minimize the discrepancy between the estimated validity of



the events and their ground truth by solving a constrained
optimization problem as follows:

L N
arg’EﬂnZ Z(abs(ELp —E;p)|01,p,D,S) (2)
Eip  1=1P=1

where abs is a function to generate the absolute value of a
given number.

IV. SOLUTION

In this section, we present the SocialDrone framework that
integrates the social media sensing and the drone sensing
systems to address the problem formulated in the previous
section. The SocialDrone is essentially an active sensing
scheme that selectively queries a subset of sensing cells by dis-
patching drones driven by social media signals, and leverages
the acquired measurements to improve the overall accuracy
of the sensing system. SocialDrone incorporates three major
components: i) a reliable social signal distillation (RSSD)
module that distills reliable signals from noisy social media
data to dispatch drones; ii) a drone task allocation (DTA)
module that allocates a subset of events to the drones based on
the distilled social signals and guides the drones to the location
of the events before their deadlines expire; iii) a trustworthy
source selection (TSS) module that leverages measurements
obtained by the drones to discard unreliable social sources and
improve the quality of signals from social media. An overview
of SocialDrone is shown in Figure 4.

Input

Social Reliable Social Signal| Estimate Drone Task
Media Distillation Module | Event Allocation Module
Dat Truthfulness
ata  |ufep] " >
? >
‘ 7 Igl' T>e
anj- & @J’Q — v®
‘m— 17 e
rd
Discard A -rm-rz 1
unreliable
Output sources o
Id:‘:::‘f;:d Trustworthy Source | Fly to Event +
Selection Module |[Location and X +
‘ Obtain
X X4 &\ +/ 2 Truth 4
v -4 < +
v 2722

Figure 4. Architecture of the SocialDrone Framework

A. Reliable Social Signal Distillation (RSSD) Module

The social media posts are often generated by unvetted users
with unknown reliability. Several truth discovery algorithms
have been developed to assess the truthfulness of the event as
well as the reliability of users [5], [14]. The RSSD module
incorporates a set of state-of-the-art truth discovery solutions
into our framework to distill useful signals from social media.

In particular, we leverage an ensemble of a diverse set of
representative truth discovery schemes to jointly identify: 1)
the estimated label of the event; and 2) the uncertainty of the
estimated label. The rational of the ensemble technique is to
eliminate the bias of each individual truth discovery algorithm
by combining them into a more robust and accuracy scheme
[27].

Formally, we choose a diverse set of M representative truth
discovery algorithms T'D1,T D5, ..., T'Dy;. We refer to these
algorithms as an “ensemble” and each of the algorithm as
a “ensemble member”. The inputs to each truth discovery
scheme are the social media signals (e.g., the tweets) and
the algorithm outputs two sets of scores defined below. The
outputs of all the members jointly decide the final label of the
events.

DEFINITION 6. Event Correctness C’l(f;) for event F;
from member 7'D,,: A score in the range (0,1] that signifies
the gossibility that an event is true. The higher the value of
CI(Z is, the more likely the event F; ), is true (i.e., I, exists).

DEFINITION 7. User Reliability 1.\ for user U{™: A
score in the range (0, 1) that represents trustworthiness of a
social media user. Intuitively, the higher value of u&m) is, the
greater likelihood user U, contributes a valid report.

For each member T D,,, we define a weight wﬁn, that
represents the authority level of the algorithm in determining
the final label of the event. The higher the weight, the more
trustworthy the algorithm’s output is.. The expert weight is
dynamically adjusted based on the performance of each expert.
We use a feedback control mechanism to update the weights
by comparing the estimated labels of each expert with the
actual ground truth collected by the drones [28].

Given the expert weights and outputs of the members,
the ensemble decides the final label of the event, which is
the weighted sum of the label distributions of all ensemble
members. Formally, we calculate the event E; ,,’s truthfulness
(denoted as C7,p), and source reliability for user U,, (denoted

as b, )as:
M
_ l (m)
CI’P - Z wm. X CJJ, )
m=1

The event truthfulness score () ;, is used to infer the label of
events where we do not dispatch drones. The user reliability
score i, is used later for closed-loop control to the RSSD
module via a source selection mechanism. The details are
presented in Section I'V-C.

We then quantify the uncertainty of the estimated event
truthfulness. We define a new metric called event ambiguity
that measures the members’ overall uncertainty of labeling a
event’s truthfulness. The intuition is that, if the members have
high disagreement, then the system cannot confidently identify
the truthful label of the event. In that case, we assign it higher
priority for drones to verify. To this end, we derive the event
ambiguity score H,; ; as:

M
Hu = Z win X /‘L7(J,m) (3)
m=1

M
Hip=— Z (Pr(Cl(Z)) x log Pr(Cl(Z)) + Pr(1 — CI(Z))X
m=1
log(1 = Pr(C{y)) x Var(C{}), .. C{3", ... )0
“)

where Var(-) calculates the variance of a sequence. In the

above formulation, the first term —Z%ﬂ (Pr(C’l(;l)) X



1ogPr(Cl($)) + Pr(1 — Cl(f;)) x log(l — PT(CZ(’ZL)))

captures the aggregation of internal ambiguity of each

member, characterized by entropy. The second term
Var(C’l(;), ..,C’l(;n), ...,C’l(]:[)) defines the global ambiguity of

all members in terms of the variance of their output truthful-
ness scores.

B. Drone Task Allocation (DTA) Module

The DTA module is designed to leverage the outputs of the
RSSD module to drive the drones to the desirable locations
and actively collect ground truth information of disaster events.
The DTA module is a two-step process: 1) a game theoretic
task assignment scheme is developed to identify the optimal
event locations as well as the sequences of event locations to
visit for each drone; 2) a path planning scheme is developed
to identify the actual trajectory of visiting the assigned event
locations for each drone. We discuss the details of the two
schemes below.

1) Game Theoretic Task Assignment: The goal of the
game theoretic task assignment is multi-fold. First, due to the
limited number of drones, the scheme must carefully choose
the subset of events to verify by the drones which helps
to augment the performance of RSSD module. Second, the
physical constraints (e.g., the velocity of the drones and the
deadlines of the events) must be considered. However, the
above two aspects of the goal can sometimes be at odds with
each other. For example, an event whose ground truth label
could help significantly improve the accuracy of RSSD may
be too far away from the drones to reach before its deadline
expires. Moreover, it may not be optimal to send multiple
drones to the same or nearby locations and cause contention
between drones. To address the above challenges, we develop a
bottom-up game theoretic (BGT) drone task allocation scheme
to assign tasks to the event location.

In game theory, congestion games are often used to mitigate
resource contention (e.g., event locations) among a set of
players (e,g., drones). We adopt a particular subclass of
congestion games called singleton weighted congestion games
[29] in our task allocation module. In a singleton weighted
congestion game, the expected payoff of each task monotoni-
cally decreases as the number of players (drones) that picked
the task increases. We assume that each drone defines its own
utility function (weighted congestion property) and only picks
one task at a time (singleton property). We note that the Pure
Strategy Nash Equilibrium is guaranteed to exist under the
above singleton weighted congestion game protocol [30]. This
property is crucial for the drones to make mutually satisfactory
task allocation decisions.

There are two critical components in our singleton weighted
congestion game protocol: utility function and congestion rate.
We formally define them below.

DEFINITION 8. Utility Function for event £ ,: it repre-
sents the benefit for picking a task (i.e., event location).

DEFINITION 9. Congestion Rate ~; , for event F; ,: A
score in the range of [1,G + 1] that indicates the level of

congestion. Specifically, 7;, is the number of drones that
pick event E; , plus one. When a drone selects an event, the
congestion rate for that event is incremented by one.

In our model, we devised a customized utility function for
drone D, referred to as event priority score as follows:

g )\1Hl’p + Agwﬂp + )\351}17
U =
Lp Yip

The above utility function prioritizes the events for drone
task allocation based on three factors: i) the uncertainty of
an event, as captured by the ambiguity score (i.e., H; p)); ii)
the Euclidean distance to the event from the drone, denoted
as wi s and iii) the deadline of the event, as captured by
01,p- In particular, the uncertainty factor prioritizes the events
reported by social media that the truth discovery algorithms
are not confident about. The deadline factor is designed to
prioritize the events with tighter deadlines. The distance factor
prioritizes events with shorter distance from the drones for the
sake of energy savings. A1, Ao and A3 represent the weights
of each factor. Their values are computed using proportional
control, a widely adopted feedback loop technique in control
[31]. Finally, the congestion rate (i.e., ;,,) on the denominator
of the utility function is designed to avoid contention of
drones. In particular, if two drones pick the same event, the
utility will decrease for both drones. Each drone then makes
its best decision towards maximizing its utility, until a Nash
Equilibrium is found. We note that each drone in the system
can pick multiple events to explore based on the utility. The
Nash Equilibrium (NE) exists in the proposed game where
every drone is assumed to know the best strategies of all other
drones (i.e., picking the task has the highest utility) and no
drone has anything to gain by only changing its own selected
tasks. For each sensing cycle, the congestion game is played
multiple rounds until a NE is achieved. We leverage the best-
response dynamics algorithm to find the NE [32]. The process
for task allocation is summarized in Algorithm 1.

2) Path Planning: Once all the tasks are assigned to the
drones by the BGT scheme, we develop a path planning
scheme to carefully plan the routes for the drones to reach
the assigned locations of the events. The objective of the path
planning is twofold: 1) meet the deadline requirements of the
events, and 2) minimize the energy consumption of drones. We
particularly emphasize on reducing the energy usage because
a drone can be assigned multiple tasks and it has a finite flight
time constrained by the battery capacity. Our goal is to make
the best effort to ensure the drones can reach all the assigned
destinations before they run out of batteries. We elaborate our
path planning algorithm below.

For each drone D, the physical dynamics is described by
a discrete form:

®)

wy(tH-l) = Adwg(tb) + Bdfg(tL)v (6)
where © € N is the sampling index. w, € R* is the
state of drone g with wy = [p, vy, where py,v, € R?

are the position and velocity of the drone, respectively.



Algorithm 1 Singleton Congestion Game for Selecting Events

Input: D7E7 Hl,p)5l7p7wiq7p)'7l)p7 Al) >\27)‘3

Output: Sets of tasks for drones, F; = Fll,F2l, ...,Fé,} at sensing

cycle 1

1: Initialize F7,~, u{ »

2: forl=1:Ldo

3 while all doubtful events are not selected do

4: forg=1:G do

5: for p=1: N; do

6: if 7, does not exist then

7 Yip =1

8: end if

9: compute uﬁ » based on Equation (5)

10: end for

11: taskScores = ulg

12: forp=1:N, do

13: selectTask = mazimum(taskScores)
14: p’= value of p for mazimum(taskScores)
15: if selectTask not in F' then

16: Ff = append(E, ;)

17: Vpr =Vpr +1

18: else

19: remove selectT'ask from tasks
20: end if
21: end for
22: end for
23: end while
24: end for
fo = [fonr fg2]" € R? is the local admissible control

force. (Aq, By) are discretized system matrices with proper
dimensions.

To generate feasible path leading to the selected location
of events, we model the goals as small convex polygonal
boxes characterized by {p € R?la];[la O2lp + by; <
0,j = 1,2,...,M,}, where a,; € R? b,; € R, and
I5,05 € R?X2 denote the 2-dimensional identity and zero
matrices, respectively [33]. We assume that all drones share a
synchronized clock [34]. The flight time Y7, to the location of
a selected event Ej j, is upper-bounded by the event deadline
d1,p. The motion planning constraints can be summarized as:

(J,Z;j[fg

OaJwg(Yip) +bg; <0 7

The motion planning constraint requires drone D, to approach
the selected location of an event within Y7 j,.

To minimize the energy consumption of drones, we define
the following cost function W,;, to represent the energy
consumption with a goal penalty for drone g [35]. The goal
penalty is used to push drones approaching the selected events.

Yip Yip
Woip = Z(QT X wg,e, | + 17 x| fo.0,]) + Z dg. (8)
=1 =1

where ¢ and r are non-negative weighting vectors and |.|
denotes the element-wise absolute value. The second term, the
goal penalty, is defined as the Manhattan distance between the
drone and the selected location of an event.

The path planning module aims to find the optimal path that
minimizes energy cost given in Equation (8) while satisfying
drone dynamics in Equation (6) as well as the task assignment
and event deadline constraints in Equation (7). We solve the

constrained optimization problem by encoding it as a mixed
integer linear programming (MILP) problem. In particular, we
adopt the approach used in [35] by introducing slack vectors
with additional constraints such that ¥, ; ,, can be transformed
into a linear cost function. The path planning problem can then
be formulated as a MILP problem since both drone dynamics
in Equation (6) and path planning constraints specified by
Equation (7) are also linear. The MILP problem is solved using
a commercial solver Gurobi [36].

C. Trustworthy Source Selection (TSS) Module

The TSS module leverages the sensing measurements col-
lected by drones in DTA module to calibrate the truth discov-
ery algorithms in the RSSD module and improve the overall
system performance. In particular, the TSS module dynam-
ically decides the threshold to filter out unreliable sources
from social media. This process is particularly challenging
due to several reasons. First, there exists a unique trade-off
between the source selection and the performance of the truth
discovery schemes. Specifically, if the system discards too
few unreliable sources or does not filter sources at all, the
false claims from unreliable sources will significantly degrade
the system performance. However, if the system discards too
many sources, the performance will then suffer from the data
sparsity problem [17]. Second, the sources and the claims they
contribute may both change significantly over time. It is not
a trivial task to decide on the optimal threshold for source
selection in such dynamic settings [7].

To address the source selection problem, we develop a
contextual multi-armed bandit (CMAB) based solution by
leveraging techniques from reinforcement learning. The key
design philosophy for selecting the CMAB is that it can embed
the context information (e.g., the number of social media users
and their reported events) into the mechanism of the source
selection. Incorporating the context information in our model
is important since it provides an abstraction of the dynamic
states of the social signals and guidance for the TSS module
to choose the threshold that is optimal at the current context.

In CMAB, a set of actions are available with each of them
associated with a reward. The key idea of CMAB is to observe
a context and identify a sequence of actions that can maximize
an expected reward with limited or no initial knowledge
about each action’s reward function. In particular, our problem
involves an exploitation-exploration tradeoff: the exploration
propels the system to try out different actions for acquiring
knowledge about the reward functions at the cost of receiving
low rewards (i.e., similar to playing slot machines at random
in a casino). The exploitation tries to greedily select the
action that maximizes the estimated reward. However, the pure
exploitation may lead to a poor system performance due to the
lack of knowledge of the reward functions without exploration.
Our goal is to achieve a good balance between leveraging
existing knowledge (i.e., exploitation) and attempting new
source selection thresholds (i.e., exploration).

We now define the key terms in CMAB and its mapping to
our source selection problem below:



DEFINITION 10. Context z;: The context z; in the TSS
represents an abstraction of the dynamic states of the social
signals. In particular, we represent the context by a tuple z; =
{Mi, v}, where M, is the number of sources at sensing cycle
I and v, is the average number of tweets made by a source at
sensing cycle [. Intuitively, with greater values of M; and v,
the system will be in a context of more liberty in discarding
the unreliable sources and vice versa.

DEFINITION 11. Action Set A': The action in the TSS
module refers to a set of threshold levels for unreliable sources
to be discarded at a particular sensing cycle. It is represented
by a set of discrete actions A" = {A} AL ... AL}, An
example action set is {0.0,0.1,0.2,...,0.9}. A selected action
of 0.2 indicates the user U, will be discarded if u, < 0.2.

DEFINITION 12. Reward R': The reward in the TSS
module refers to the accuracy of events identified by the
RSSD module. Thus, higher the accuracy, higher the reward.
In particular, the reward for sensing cycle [ is computed by:

N;
1 —
R' = ﬁl Z(l - ‘El,p - El,p‘) 9)
p=1

where E/'l; denotes the estimated truth by the RSSD module
and F; , denotes the actual ground truth of the events verified
by the drones.

In each sensing cycle [, the algorithm chooses an action
a; € Al, and receives reward R'|a; whose expectation depends
on both the context z; the action a;. We define the total actual
reward as ZzL:1 R!la; and the total optimal expected reward
as E[>°]_, R!|a;], where a} is the action with the maximum
expected reward at sensing cycle /. The goal of CMAB is to
derive an optimal source selection threshold that minimizes
the regret which is the difference between the actual reward
and the optimal reward. Formally, our objective is:

L L
argmin (Z R a; — E[Z Rl|a7] ) JA<I<L (10
AL \i= 1=1
To find the optimal action, we adopt the LinUCB algo-
rithm [37] to solve our CMAB problem. The key mechanism
of the LinUCB algorithm is to obtain the expected reward of
each action by finding a combination of the past rewards of
the action. In particular, we first design a feature vector z; , to
encode the context z; and action a. We assume that the system
initiates a training phase for ¢ sensing cycles, where ¢ is a
tunable parameter whose setting is elaborated in Section V. In
the first ¢ sensing cycles, we explore all the available actions
to obtain a set of training data. We define two features in our
model (i.e., the number of sources and the average number of
tweets made by a source) and use j to indicate the number of
features: j = 2 in our case). We consider individual feature
sets k, to contain the data of the features in the past sensing
cycles. The goal of the algorithm is to learn the relationship
between the context-action and reward to establish a model
for deciding the optimal source selection threshold. We let J,,

be a regressor matrix of dimension ¢ X j at sensing cycle . We
apply ridge regression to the training data (.J,, k,) in order to
obtain a coefficient vector 6, during the exploration phase:

Op = (J Ty 4+ 1) T ky an

where I; is a d x d identity matrix. For notation convenience,
let Q, = JIJ, + I;. After performing the regression, we
can obtain the estimated reward by linear combinations of the
optimization parameter 6, and the feature vector z; ,:

R! = af 0, (12)
In the exploitation phase, we obtain our best action-selection
strategy at each sensing cycle [ by choosing the action that
yields the largest predicted reward for the currently observed
context. The variance 072@ of the estimated reward is given by:

2 _ T —1
051 *xl,aQa Li,a

(13)
Combining the results above, we derive the optimal action
(i.e., source selection threshold) as:

aA?‘ = argmax <7§,l —+ ,6 $l7:aQ;1£El,a) (14)

acAl

where 3 is a constant factor and the term /2], Qa'z;

denotes the standard deviation of the estimated reward. Once
the optimal action is learned for the current context, the system
switches to using the learned action A' for the TSS module.

V. EVALUATION

In this section, we extensively evaluate the performance
of SocialDrone through a real-world disaster case study. The
results demonstrate that SocialDrone significantly outperforms
the baselines by identifying the disaster events more accurately
and quickly.

A. Experimental Platform and Setup

We first acknowledge the fact that a real-world deploy-
ment of drones in disaster response applications is difficult
because the disaster situations are unpredictable and can hardly
be replicated. Therefore, we implemented our SocialDrone
framework in ArduPilot SITL (Figure 5) [38], a reputed drone
simulator which can closely reproduce real life disaster scenar-
ios. The simulator can virtually model any UAV with known
physical parameters like dimensions, weight, speed, energy
consumption and also environmental elements like wind or
signal losses. The simulator’s integration with Google Maps
enables it to simulate sending drones to real-world locations,
which is crucial for our experiment. We utilized DroneKit [39],
a middleware to connect the Ardupilot SITL engine with the
SocialDrone framework via a low-latency UDP connection.
The particular model of drone that we selected in our simulator
is the DJI Phantom 2, a quad-rotor helicopter '. Figure 5
illustrates a snapshot of the SITL simulator interfaced with
the SocialDrone framework.

Uhttps://www.dji.com/phantom-2/info#specs



Figure 5. Ardupilot SITL Integrated with SocialDrone. The right pane
displays the current position of the drones. The left pane provides the selected
drone’s altitude, speed, and other critical parameters.

B. Evaluation Dataset

We collected a real world dataset using Twitter data feeds
during the California Camp Fire, a wildfire in Northern
California that occurred in November 2018. The fire resulted
in 86 deaths, 3 missing, 17 injuries including firefighters and
damages estimated to be about $10 billion 2. The statistics of
the dataset are summarized in Table I.

Table 1
DATA STATISTICS

Start Date November 08, 2018
Time Duration 4 days

Location California, USA
No. of tweets 140,028

No. of tweet users 138,214

No. of event locations 124

The collected data trace is then replayed to emulate the
disaster event in real time. We organize the reported events
based on their timestamps and group them into a series of
sensing cycles. Specifically, we selected the duration of the
sensing cycle to be 10 minutes based on the frequency of the
events observed in our dataset. There are 500 sensing cycles
in the duration of the event we studied. During each sensing
cycle, a set of preprocessing steps are performed in real-time.
We filter the relevant tweets by first running keyword searches
(e.g., Camp, Fire, Road, Missing, California) and remove the
irrelevant ones. We also filtered out all tweets without geo-
location information. Next, we cluster similar tweets into the
same cluster using the state-of-the-art online tweet clustering
tool [3] and generate claims that report events at particular
locations. We independently collect ground truth labels of the
reported events from historical facts and articles published by
credible sources (e.g., reports from mainstream news media).

We selected the dimension of each sensing cell to be 1 mile
x1 mile and we have 896 cells in the studied area defined
by our dataset. By examining the events in the California
Camp Fire, we classify their priorities into three categories
based on their urgency, denoted by p; ,, and assign the event
deadlines accordingly. For example, we assigned a deadline
range of [1, 3) minutes to the most urgent events (p; ,=1),
a deadline range of [3, 6) minutes to the next level of event
urgency (p;,=2) and a deadline range of [6, 10] to the last
level (p; ,=3) within a sensing cycle. We then pick a deadline
for an event randomly from the above ranges based on its

2Statistics obtained from https://www.insurancejournal.com/news/west/
2018/11/19/509677 .html

urgency level. The values of the parameters A;, Ao and A3
in the DTA module are obtained through a learning phase. In
particular, we select the first 1/5 of the sensing cycles as the
learning phase. For the TSS module, the value of parameter 7
is set to 100.

C. Compared Baselines

We choose the following baselines in our evaluation.

1) Social Only Systems: A social media sensing based sys-
tem determines the truthfulness of disaster events solely based
on the social media sensing data (i.e., tweets). We choose
two widely adopted truth discovery algorithms, Hubs and
Authorities (HITS) [40] and Maximum Likelihood Estimation
(MLE) [5], as our social only schemes.

2) Drone Only Systems: A drone only system utilizes a
drone’s on-board sensors to perform an aerial scan of a site and
identify disaster events. We assume that the drones can obtain
the ground truth of the events they covered. We choose two
typical patrolling strategies adopted by the autonomous drone
guidance systems: i) Random Walk, and ii) Fixed Routes. In
Random Walk, drones traverse an arbitrary number of sensing
cells in a random direction and changes direction periodically.
In Fixed Routes, drones traverse along a designated patrol
route in an endless loop and cover events as they come across.

3) Social and Drone Combined Systems: In addition to
social only and drone only schemes, we also include several
simplified versions of the SocialDrone system as our baselines.
We generate the first baseline “MLE+BGT” by keeping the
bottom-up game theoretic (BGT) task allocation module and
disabling path-planning module and the source selection mod-
ule in SocialDrone. Next, we take the “MLE+BGT” scheme
and further modify the task allocation module to only consider
the distance of events from the drones using a greedy shortest
path (GSP) strategy, calling the scheme “MLE+GSP”. We
additionally include two more baselines “HITS+GSP” and
“HITS+BGT” by replacing the MLE algorithm with HITS in
the two aforementioned MLE based baselines.

Note that we assign initial locations of the drones as uni-
formly distributed across the sensing area for all the baselines
with drones. This is because we assume no prior knowledge
of where the events could happen and the uniform distribution
maximizes the coverage of the drones.

D. Evaluation Results

In the first set of experiments, we evaluate the performance
of all schemes across the entire dataset. We selected a set of
15 drones for the testing of our framework as well as the
baseline drone based sensing systems. The results are pre-
sented in Table II. We observe that SocialDrone consistently
outperforms the other approaches in identifying the truthful
events during the disaster. In terms of classification accuracy,
precision, recall and F1 Score, the performance gain achieved
by SocialDrone compared to the best-performing baseline,
“MLE+BGT” are 13.7%, 21.2%, 7.5% and 15.6% respectively.
Such performance gains of SocialDrone are mainly achieved



Table 11
OVERALL PERFORMANCE WITH CALIFORNIA CAMP FIRE DATASET

Category || Algorithm | Accuracy  Precision  Recall ~ Fl-Score
HITS 0.443 0.457 0.681 0.547
Social Only MLE 0.648 0.662 0.832 0.738
Rand. Walk 0.272 0.314 0.554 0.400
Drone Only Fixed Route 0.427 0.492 0.680 0.571
HITS+GSP 0.705 0.602 0.816 0.693
HITS+BGT 0.719 0.615 0.842 0.711
Social+Drone MLE+GSP 0.751 0.669 0.886 0.762
MLE+BGT 0.754 0.675 0.883 0.765
Our Scheme || SocialDrone |  0.891 0.887 0.958 0.921

by its closed-loop design that seamlessly integrates the social
media sensing and drone system components.

In the second set of experiments, we studied the effect of
the number of drones on the performance of the schemes
involving drones. For the social and drone combined baselines,
we only present the two best performed ones MLE+GSP and
MLE+BGT. In the experiment, we vary the number of drones
from 10 to 20. Figures 6 report the results for F1 score for
the drone based schemes. We observe that the SocialDrone
outperforms all the compared schemes when the number of
drones changes in the system. The performance gains achieved
by SocialDrone also increases as the number of drones in the
system increases. The reason is that SocialDrone has more
flexibility in terms of both task allocation and path planning
when the number of drones increases. The results on precision,
recall and accuracy are similar and we do not include them
here due to the space limit.
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Figure 6. F1 Score vs. Number of Drones for Schemes with Drones

In the third set of experiments, we analyze the deadline hit
rate of the drone based schemes in the system. Figure 7 shows
the results. We observe that SocialDrone achieves the highest
deadline hit rate when the number of drones changes. This is
achieved by the deadline aware path planning algorithm design
in SocialDrone system. We also observe that the deadline hit
rate increases across all schemes as the number of drones
increases and it stabilizes when the number of drones becomes
large enough (i.e, 16 in our results). This reason is that there
are certain events that can never be explored by any of the
schemes either because the deadlines are too short or the events
are located so far away from the drones that they cannot be
explored within their deadlines.

In the last set of experiments, we evaluate the average
power consumption of the drone based schemes. The results
are shown in Figure 8. We observe that the SocialDrone

framework consumes the least amount of power in all the cases
regardless of the number of drones. This remarkable savings
in power consumption is mainly achieved by the robust path
planning algorithm that carefully plans the flight path of the
drone by considering drone mechanics and energy consump-
tion. It refrains the drones from flying to events involving
infeasible outcomes (e.g., events that have too short a deadline
or are too far away and cannot be flown to with successfully
meeting the deadline requirement). Predicting ahead of time
about the outcomes allows the drones in SocialDrone to take
decisive actions ahead of time instead of wasting energy. All
the other schemes fall behind as they brute-force exploring
all the events. The above results demonstrate that along with
recovering truthful state of the events more accurately, Social-
Drone also comparatively conserves more energy of drones.
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VI. CONCLUSION

In this paper, we develop the SocialDrone framework to
integrate social sensing with drone based physical sensing
for reliable disaster response. In particular, we develop a
reliable social signal distillation module to analyze the event
truthfulness and the source reliability. We construct a game
theoretic drone task allocation module that leverages the dis-
tilled social signals to selectively dispatch drones to the desired
locations for active sensing. We further design a closed-
loop source selection module that utilizes the drones’ sensing
measurements to discard unreliable social media users. The
results from an extensive evaluation with a real-world dataset
show that the SocialDrone scheme significantly outperforms
both the social only and drone only systems. The outcomes
of this paper motivates a brand new automatic yet effective
disaster response system for future disasters.
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