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Abstract—This work is motivated by the emergence of social
sensing as a new paradigm of collecting observations about the
physical environment from humans or devices on their behalf.
These observations may be true or false, and hence are viewed
as binary claims. A fundamental problem in social sensing
applications lies in ascertaining the correctness of claims and
the reliability of data sources without knowing either of them a
priori. We refer to this problem as truth discovery. Prior works
have made significant progress to addressing the truth discovery
problem, but two significant limitations exist: (i) they ignored
the fact that claims reported in social sensing applications can
be either relevant or irrelevant to the topic of interests. (ii) They
either assumed the data sources to be independent or the source
dependency graphs can be represented as a set of disjoint trees.
These limitations led to suboptimal truth discovery results. In
contrast, this paper presents the first social sensing framework
that explicitly incorporates the topic relevance feature of claims
and arbitrary source dependency graphs into the solutions of
truth discovery problem. The new framework solves a multi-
dimensional maximum likelihood estimation problem to jointly
estimate the truthfulness and topic relevance of claims as well as
the reliability and topic awareness of sources. We compared our
new scheme with the state-of-the-art truth discovery solutions
using three real world data traces collected from Twitter in
the aftermath of Paris Shooting event (2015), Hurricane Arthur
(2014) and Boston Bombing event (2013) respectively. The eval-
uation results showed that our schemes significantly outperform
the compared baselines by identifying more relevant and truthful
claims in the truth discovery results.

Index Terms—Social Sensing, Truth Discovery, Topic-
Aware, Arbitrary Source Dependency Graph, Twitter

I. INTRODUCTION

This paper presents a principled framework to address the
topic-aware truth discovery problem with arbitrary source de-
pendency graphs in social sensing applications. Social sensing
has emerged as a new paradigm of collecting observations
about the physical environment from humans or devices on
their behalf [2]. This paradigm is motivated by the prolifera-
tion of various sensors in the possession of common individu-
als and the popularity of social networks that enable massive
information dissemination opportunities. For example, drivers
may contribute data through their smartphones to report the
state of traffic congestion at various locales [7]. Alternatively,
survivors may contribute data to online social media (e.g.,
Twitter, Facebook, Flickr) to document the damage and outage
in the aftermath of a disaster [24]. These observations may
be true or false, and hence are viewed as binary claims.

A fundamental problem in social sensing applications lies
in accurately ascertaining the truthfulness of claims and the
reliability of data sources. We refer to this problem as truth
discovery.

Consider an emergency response scenario (e.g., campus
shooting, fire disaster, or bombing event) as an example.
Survivors and witnesses may spontaneously report to online
social media (e.g., Twitter, Facebook, Google+) about the
damage and the current situation of the event (e.g., the
shooter’s location, available exit route, number of victims).
Some reports are true and some are false. Without knowing
the individual sources a priori, it is very challenging to
identify the truthfulness of each claim. Majority voting (i.e.,
simply counting the number of sources that ascertain the same
claim) is not always a good measure of claim truthfulness, as
different sources may have different reliability [33]. In fact,
the reliability of individual sources is not known in advance
in such applications (i.e., we normally do not know when
and where the emergent event will happen and who will
get involved) [27]. Moreover, sources may use the keyword
of the emergent event (e.g., hashtag in Twitter) to generate
irrelevant claims with a purpose of attracting more public
attention [4]. Additionally, sources could also intentionally
or unintentionally forward misinformation through their social
networks [30]. All these complexities make the truth discovery
in social sensing a non-trivial task.

Previous works have made significant progress to address
the truth discovery problem in social sensing [10], [11],
[17], [30], [31], [33], [37], [40]. However, two significant
limitations exist in the state-of-the-arts solutions. First, current
solutions ignored the fact that claims reported in social sensing

Tweet Topic Relevance
Thanks to generosity of volunteer blood donors there
is currently enough blood on the shelves to meet
demand. #BostonMarathon

Relevant

Child killed in Monday’s Boston Marathon bombings
identified as 8-year-old Martin Richard, reports the
Boston Globe

Relevant

Over at Canary Whalf! Sun is shinning! Making
me excited for the weekend antics! #Party #Boston-
Marathon#Bbq

Irrelevant

Next month, a special ONE DAY ONLY offer is
coming #half #BostonMarathon

Irrelevant

Table I
ON AND OFF TOPIC CLAIMS IN BOSTON MARATHON BOMBING EVENT



Figure 1. Source Cyclic Dependency Examples in Twitter

applications can be either relevant or irrelevant to the topic
of interests [37]. For example, in the aftermath of the Boston
Marathon Bombing event in 2013, people reported their claims
(e.g., tweets) to online social media that are both relevant
and irrelevant to the topic of the bombing event (Table I).
It is very difficult (if possible) to find a set of keywords that
could clearly separates all relevant claims from the irrelevant
ones, especially with no prior knowledge of a particular
event. Running truth discovery schemes on all collected claims
without considering whether a claim is relevant to the topic of
interests or not will generate many irrelevant claims that could
significantly interfere with decision-making [17]. Second, data
sources in social sensing are humans or devices they operate.
It is not unusual for a human source to report claims they
received from others. The previous truth discovery techniques
either completely ignored the source dependency problem [33]
or assumed source dependencies can be represented by graphs
of disjoint trees [30]. This oversimplification on the source
dependency leads to suboptimal truth discovery results since
many dependency links are ignored in this abstraction (e.g.,
DAG dependency, cyclic dependency). Figure 1 shows some
simple examples extracted from Twitter where sources with
cyclic dependencies report the same claim. Such cyclic de-
pendencies make it very challenging to accurately identify the
provenance of reported claims (e.g., who reports the original
claim). The uncertain data provenance was shown to have
a direct impact on the truth discovery results (e.g., a group
of dependent sources could generate a misinformed claim by
simply repeating it many times on social media, which might
confuse the truth discovery solutions) [33]. This problem has
not been fully addressed in the previous study [30] where
source dependencies were assumed to be cycle free. This
paper develops a new model to explicitly handle arbitrary
source dependency graphs.

Important challenges exist when we generalize the truth
discovery problem in social sensing by explicitly considering
the topic relevance of claims and arbitrary source dependency
graphs. First, social sensing is designed as an open data
collection paradigm where the reliability (the likelihood of
a source to report truthful claims) and the topic awareness
(the likelihood of a source to report topic relevant claims)
of sources are often unknown a priori. Second, filtering out
the irrelevant claims by simply using predefined keywords
(or the hashtags in the Twitter examples) is not sufficient
or possible due to several reasons: (i) some relevant tweets
may not contain the predefined keywords (e.g., people can use
various words to describe the same event); (ii) some claims
that contain the keywords related with the topic of interests

are actually irrelevant (e.g., in order to attract attention). Third,
the source dependency graphs can be arbitrary since any pair
of data sources could potentially be related in social sensing.
It is a significant challenge to generalize the social sensing
framework to handle arbitrary source dependency graphs.

In this paper, we present the first analytical framework that
explicitly incorporates the topic relevance feature of claims
and arbitrary source dependency graphs into the solutions of
truth discovery problem in social sensing. The new framework
solves a multi-dimensional maximum likelihood estimation
problem where the topic relevance feature of claims is modeled
as a vector of hidden variables and the arbitrary source
dependencies are encoded into the estimation parameters. In
particular, two new Expectation Maximization (EM) based
algorithms have been developed: Topic-Aware EM (TA-EM)
and Topic-Aware Source-Dependent EM (TASD-EM). These
new algorithms jointly assign true and topic relevance values
to claims and reliability and topic awareness values to sources
in a way that is most consistent with the observed social
sensing data. We compared our new schemes with the state-
of-the-art truth discovery solutions using three real world data
traces collected from Twitter in the aftermath of Paris Shooting
event in 2015, Hurricane Arthur in 2014, and Boston Bombing
event in 2013 respectively. The evaluation results showed that
our schemes significantly outperform the compared baselines
by identifying more relevant and truthful claims in the truth
discovery results. The results of this paper are important
because they allow social sensing applications to accurately
estimate the truthfulness and relevance of claims as well as
the reliability and topic awareness of sources by excluding
irrelevant and false claims from the final estimation results
using a principled approach.

In summary, our contributions are as follows:

• To the best of our knowledge, this study is the first to
explicitly consider both the topic relevance feature of
claims and arbitrary source dependency graphs in solving
the truth discovery problem in social sensing.

• We develop a principled framework that allows us to
derive optimal solutions (in the sense of maximum
likelihood estimation) that are most consistent with the
observed social sensing data and source dependencies.

• We perform extensive experiments to investigate the
performance of our schemes and other truth discovery
solutions on real world social sensing data traces. The
evaluation results demonstrate the effectiveness and non-
trivial performance gains achieved by our new schemes.

The rest of this paper is organized as follows: we discuss
the related work in Section II. In Section III, we present the
new topic-aware truth discovery model with arbitrary source
dependency graphs. We compare our model with previous
truth discovery models in Section IV. The proposed TA-
EM and TASD-EM algorithm are presented in Section V
and Section VI respectively. We present the experiments and
evaluation results in Section VII. The limitations and future
work are discussed in Section VIII. Finally, we conclude the



paper in Section IX.

II. RELATED WORK

Social sensing has emerged as a new sensing paradigm
that empowers average people to contribute their observations
and measurements about the physical world at a very large
scale [1]. A comprehensive overview of social sensing appli-
cations is presented in [26]. More recent works have focused
on addressing important challenges such as mobile audio sens-
ing [34], data fusion and information aggregation [29], [36],
distributed cloud sensing [42], and social group stability [19].
Truth discovery is a critical problem for reliable social sensing
applications [2]. Previous work made important progress to
address this problem but their solutions either ignored the topic
relevance feature of claims [30], [33] or made oversimplified
assumption on source dependencies [17], [37]. In contrast, this
paper develops a new analytical framework that provides a
generalized truth discovery solution by explicitly considering
both the topic relevance feature of claims and arbitrary
source dependencies in social sensing applications.

In data mining and machine learning literature, there exists a
good amount of work on the topics of fact-finding that jointly
compute the source reliability and claim credibility [8]. Hubs
and Authorities [15] established a basic fact-finding model
based on linear assumptions to compute scores for sources
and claims they asserted. Yin et al. introduced TruthFinder as
an unsupervised fact-finder for trust analysis on a providers-
facts network [39]. Other fact-finders enhanced these basic
frameworks by incorporating analysis on properties or depen-
dencies within claims and sources [21], [25]. More recently,
new fact-finding algorithms have been designed to address
the background knowledge [18], multi-valued facts [43], and
multi-dimensional aspects of the problem [41]. Using the
insights (i.e., the mutual dependency between source reliability
and claim correctness) from the above work, we develop a new
estimation framework to explicitly model unreliable human
sensors and solve the topic aware truth discovery problem in
social sensing applications.

Our work is also related with reputation and trust systems
that are designed to assess the reliability of sources (e.g., the
quality of providers) [3], [38]. eBay is a typical reputation sys-
tem based on a homogeneous peer-to-peer network structure,
which allows participants to rate each other after each pair of
them conduct a transaction [9]. Alternatively, Amazon on-line
review system represents another type of reputation system
based on a heterogeneous network structure, where different
sources offer reviews on products (or brands, companies)
they experienced [6]. Recent work has also investigated the
consistency of reports to estimate and revise trust scores
in reputation systems [12]–[14]. However, in social sensing,
we normally do not have enough history data to compute
the converged reputation scores of sources due to the short-
lived sensing campaigns [27]. Instead, this paper presents a
maximum likelihood estimation approach that jointly estimates
the reliability and topic awareness of sources as well as

the truthfulness and topic relevance of claims based on the
observations collected from social sensing applications.

Finally, maximum likelihood estimation (MLE) framework
has been widely used in the wireless sensor network (WSN)
and data fusion communities [16], [20], [23], [35]. For ex-
ample, Pereira et al. proposed a diffusion-based MLE algo-
rithm for distributed estimation in WSN in the presence of
data faults [20]. Sheng et al. developed a MLE method to
infer locations of multiple sources by using acoustic signal
energy measurements [23]. Eric et al. deisgned a MLE based
approach to aggregate the signals from remote sensor nodes
to a fusion center without any inter-sensor collaborations [16].
However, the above work primarily focused on the estimation
of continuous variables from physical sensor measurements. In
contrast, this paper focuses on a set of binary variables that
represent either true/false and relevant/irrelevant claims from
human sensors. The discrete nature of the estimation variables
leads to a more challenging optimization problem that has been
solved in this paper.

III. PROBLEM FORMULATION

In this section, we formulate our topic-aware truth discov-
ery problem with arbitrary source dependency graphs as a
multi-dimensional maximum likelihood estimation problem.
In particular, we consider a social sensing scenario where a
group of M sources S = (S1, S2, ..., SM ) report a set of N
claims C = C1, C2, ..., CN . In this paper, we consider two
independent features of a claim: (i) topic relevance: whether a
claim is related to the topic of interests or not; (ii) truthfulness:
whether a claim is true or false. We let Su denote the uth

source and Ck denote the kth claim. Ck = O and Ck = O
represent that claim Ck is relevant or irrelevant to the topic of
interests respectively. In social sensing applications, sources
may indicate a claim to be relevant to a certain topic (e.g.,
using hashtags in Twitter). Furthermore, Ck = T and Ck = F
represent the claim to be true or false respectively. We further
define the following terms to be used in our model.
• ST is defined as a M ×N matrix to represent whether a

source indicates a claim to be topic relevant or not. It is
referred to as the Source-Topic Matrix. In ST , SuTk = 1
when source Su indicates Ck to be relevant to a topic
of interests and SuTk = −1 when source Su does not
indicate Ck to be topic relevant and SuTk = 0 if Su

does not report Ck at all.
• SC is defined as a M ×N matrix to represent whether

a source reports a claim to be true. It is referred to as
the Source-Claim Matrix. In SC, SuCk = 1 if source Su

reports the claim Ck and SuCk = 0 otherwise. Following
the previous social sensing models [26], we assume that
a source will only report the positive status of a claim
(e.g., in a social sensing application to report potholes on
city streets, sources will only generate claims when they
observe potholes).

• SD is defined as a M ×M matrix that represents source
dependencies. It is referred to as the Source-Dependency
Matrix. In SD, SDu,v = 1 if source Su and source Sv



have a directed dependency connection (e.g., Sv retweets
Su or replies to Su in Twitter) and SDu,v = 0 otherwise.
Based on the SD matrix, we can partition the whole set
of sources into C independent groups where sources in
different independent groups have zero elements in SD.

Note that the derivations of SC, ST and SD are explained
in the evaluation (i.e., Section VII).

One key challenge in social sensing applications lies in
the fact that sources are often unvetted and they may not
always report relevant and truthful claims. Hence, we need
to explicitly model both the topic awareness and reliability of
sources. First, we define the topic-awareness of source Su as
Tau: the probability that a claim Ck is topic relevant given the
source Su indicates it to be. Second, we observe that the source
reliability is directly related with the source dependencies (e.g.,
an independent report should be treated differently from a
repeated report in the calculation of source reliability) [30].
Hence, we define the reliability for both independent and
dependent sources. If source Su is an independent source, we
define the independent reliability of source Su as Reu: the
probability that a claim is true given that source Su reports
it to be true. If source Su is dependent, we define Reu,v as
the source’s dependent reliability: the probability that source
Sv (a dependent source of Su) reports a claim to be true and
the claim is indeed true given that Su reports it to be true.
Formally, Tau, Reu and Reu,v are defined as follows:

Tau = Pr(Ck = O|SuTk = 1)

Reu = Pr(Ck = T |SuCk = 1)

Reu,v = Pr(Ck = T, SvCk = 1|SuCk = 1) (1)

We further define a few conditional probabilities that we
will use in our problem formulation. Specifically, we define
ET

u,O and EF
u,O as the (unknown) probability that source Si

reports a claim to be topic relevant or not given the claim is
indeed topic relevant. Similarly, we define ET

u,O
and EF

u,O
as

the (unknown) probability that source Si reports a claim to be
topic relevant or not given the claim is indeed topic irrelevant.
Formally, ET

u,O, EF
u,O, ET

u,O
and EF

u,O
are defined as:

ET
u,O = Pr(SuTk = 1|Ck = O)

EF
u,O = Pr(SuTk = −1|Ck = O)

ET
u,O

= Pr(SuTk = 1|Ck = O)

EF
u,O

= Pr(SuTk = −1|Ck = O) (2)

In addition, if source Si is independent, Iu and Ju are
defined as the probability that source Su reports a claim Ck to
be true given that claim Ck is indeed true or false. If source
Su is dependent, Iu,v and Ju,v are defined as the probability
that source Su reports claim Ck to be true given that source
Sv also reports the claim to be true and this claim is indeed

true or false. Formally, Iu, Ju, Iu,v and Ju,v are defined as:

Iu = Pr(SuCk = 1|Ck = T )

Ju = Pr(SuCk = 1|Ck = F )

Iu,v = Pr(SuCk = 1|SvCk = 1, Ck = T )

Ju,v = Pr(SuCk = 1|SvCk = 1, Ck = F ) (3)

Notice that sources may report different number of claims,
we denote the probability that source Su reports a claim to
be topic relevant as tpu,O (i.e., tpu,O = Pr(SuTk = 1)),
and denote the probability that source Su reports a claim to
be topic irrelevant as tpu,O (i.e., tpu,O = Pr(SuTk = −1)).
Additionally, we denote the probability that source Su reports
a claim to be true by spu (i.e., spu = Pr(SuCk = 1)). We
further denote hO as the prior probability that a randomly
chosen claim is indeed relevant to the topic of interests (i.e.,
hO = Pr(Ck = O)). We denote d as the prior probability
that a randomly chosen claim is true (i.e., d = Pr(Ck = T )).
Based on the Bayes’ theorem, we can obtain the relationship
between the items defined above as follows:

Tau =
ET

u,O × hO

tpu,O

Reu =
Iu × d

spu

Reu,v =
Iu,v ×Rev × spv

spu
(4)

Finally, we define two more vectors of hidden variables Υ
and Z where Υ indicates the topic relevance of claims and
Z indicates the truthfulness of claims. Specifically, we define
an indicator variable rk for each claim where rk = 1 when
claim Ck is topic relevant and rk = 0 when claim Ck is topic
irrelevant. Similarly, we define another indicator variable zk
for each claim Ck where zk = 1 when Ck is true and zk = 0
when Ck is false.

Using the above definitions, we formally formulate the
topic-aware truth discovery problem with arbitrary source de-
pendency graphs as a multi-dimensional maximum likelihood
estimation (MLE) problem: given the Source-Topic Matrix
ST , the Source-Claim Matrix SC and the Social-Dependency
Matrix SD, the objective is to estimate: (i) the topic relevance
and truthfulness of each claim; (ii) the topic awareness and the
reliability of each source. Formally, we compute:

∀k, 1 ≤ k ≤ N : Pr(Ck = O|ST, SC, SD)

∀k, 1 ≤ k ≤ N : Pr(Ck = T |ST, SC, SD)

∀u, 1 ≤ u ≤M : Pr(Ck = O|SuTk = 1)

∀u, 1 ≤ u ≤M : Pr(Ck = T |SuCk = 1)

(5)

IV. DISTINCTION FROM PREVIOUS MODELS

Before we present our estimation algorithms to solve the
problem formulated in the above section, we show that our
model is distinct from the the previous models in solving the
truth discovery problem in social sensing [17], [28], [30], [33],
[37].
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Figure 2. Model Comparison with Previous Work

Among current truth discovery models, two representative
models (IPSN 12 and IPSN 14 model in Figure 2) go closest to
our work. First, Wang et al. presented a basic truth discovery
model (i.e., IPSN 12) that assumes all sources are independent
and all claims are relevant to the topic of interests. In [30],
an extended model (i.e., IPSN 14) was proposed to consider
source dependencies by representing the dependency graphs
as a set of disjoint trees. The extended model also assumes
all claims are topic relevant. More follow-up works have been
proposed to further extend the above models by considering
claim dependencies [28], computation efficiency [37] and
quantitative values of claims [17]. However, none of these
models considered the topic relevance features of claims and
arbitrary source dependency graphs, both of which are impor-
tant issues to address in real world social sensing applications.

In sharp contrast to previous models, the model presented
in this work explicitly incorporates the topic relevance feature
of claims into the truth discovery problem and considers more
general source dependencies that are represented by arbitrary
graphs. In particular, as we can observe in Figure 2, we
introduced two separate set of variables to represent both
topic relevance and truthfulness features of claims. In our
source dependency graph, any pair of sources could have a
dependency link (e.g., a source could have multiple parents or
cyclic dependencies in the graph). Therefore, we extend the
scope of the truth discovery problem in social sensing and
our estimation algorithms can solve more general problems
that current solutions cannot solve. We present our estimation
algorithms in the following sections.

V. TOPIC RELEVANCE IDENTIFICATION

In this section, we present the topic relevance identifica-
tion scheme: Topic-Awareness Expectation Maximization (TA-
EM). The TA-EM scheme jointly estimates the topic relevance
of each claim and the topic awareness of each source.

A. Deriving the Likelihood Function

EM is an optimization scheme that is commonly used to
solve the MLE problem where unobserved latent variables

Eu,O
T

Eu,O
T

Eu,O
F

Eu,O
F

Tau hO

S C

SuTk

E − Step

SFu
O

rk
O

rk
O

M − Step

Figure 3. The E and M Steps of TA-EM Model

exist in the model [5] Specifically, it iterates between two
key steps: expectation step (E-Step) and maximization step
(M-step). In E-step, it computes the expectation of the log
likelihood function based on the current estimates of the model
parameters. In M-step, it computes the new estimates of the
model parameters that maximize the expected log-likelihood
function in E-step.

Given the terms and variables we defined earlier, the like-
lihood function L = (Θta;X,Υ) for TA-EM is as follows:

L(Θta;X,Υ) = Pr(X,Υ|Θta)

=
∏
k∈C

Pr(rk|Xk,Θ
(n)
ta )×

∏
u∈S

Ψk,u × Pr(rk) (6)

where Θta = (ET
1,O, ..., E

T
M,O;EF

1,O, ..., E
F
M,O;ET

1,O
, ..., ET

M,O
;

EF
1,O

, ..., EF
M,O

;hO) is the vector of estimation parameters
for the TA-EM scheme. X is the observed data (i.e., ST
Matrix) and Υ is the latent variables. Note that ET

u,O, EF
u,O,

ET
u,O

, EF
u,O

, hO are defined in Section III. Additionally, Ψk,u

and Pr(rk) are defined in Table II. In the table, SuT
O
k = 1

and SuT
O
k = 0 when source Su indicates claim Ck to be

topic relevant. SuT
O
k = 0 and SuT

O
k = 1 when source Su

reports claim Ck but does not indicate it to be topic relevant.
SuT

O
k = 0 and SuT

O
k = 0 when source Su does not report

claim Ck at all. Other notations are defined in the previous
section. The model structure is illustrated in Figure 3.

B. The TA-EM Scheme

Given the above likelihood function, we can derive E and
M steps of the proposed TA-EM scheme. First, the E-step is
derived as follows:

Q(Θta|Θ(n)
ta ) = E

Υ|X,Θ
(n)
ta

[logL(Θta;X,Υ)]

=
∑
k∈C

Υ(n, k)×
∑
u∈S

(logΨk,u + logPr(rk)) (7)

where Υ(n, k) is defined in Table II and n is the iteration
index.

In the above table, ΥO(n, k) = Pr(rk = O|Xk,Θ
(n)
ta ). It

represents the conditional probability of the claim Cj to be



Table II
NOTATIONS FOR TA-EM

Ψk,u Pr(rk) Υ(n, k) Constrains

ET
u,O hO ΥO(n, k) SuTO

k = 1, SuTO
k = 0, rk = 1

EF
u,O hO ΥO(n, k) SuTO

k = 0, SuTO
k = 1, rk = 1

ET
u,O

1− hO 1−ΥO(n, k) SuTO
k = 1, SuTO

k = 0, rk = 0

EF
u,O

1− hO 1−ΥO(n, k) SuTO
k = 0, SuTO

k = 1, rk = 0

1− ET
u,O − EF

u,O hO ΥO(n, k) SuTO
k = 0, SuTO

k = 0, rk = 1

1− ET
u,O
− EF

u,O
1− hO 1−ΥO(n, k) SuTO

k = 0, SuTO
k = 0, rk = 0

topic relevant given the observed data Xk and current estimate
of Θta. ΥO(n, k) can be further expressed as:

ΥO(n, k) =
Pr(rk = O;Xk,Θ

(n)
ta )

Pr(Xk,Θ
(n)
ta )

=
LO(n, k)× hO

LO(n, k)× hO + LO(n, k)× (1− hO)
(8)

where LO(n, k), LO(n, k) are defined as:

LO(n, k) = Pr(Xk,Θ
(n)
ta |rk = 1)

=

M∏
u=1

(ET
u,O)SuTO

k × (EF
u,O)SuTO

k

× (1− ET
u,O − EF

u,O)1−SuTO
k −SuTO

k

LO(n, k) = Pr(Xk,Θ
(n)
ta |rk = 0)

=

M∏
u=1

(ET
u,O)SuTO

k × (EF
u,O)SuTO

k

× (1− ET
u,O − EF

u,O)1−SuTO
k −SuTO

k

(9)

In the M-step, we set derivatives ∂Q
∂ET

u,O

= 0, ∂Q
∂EF

u,O

= 0,
∂Q

∂ET
u,O

= 0, ∂Q
∂EF

u,O

= 0, ∂Q
∂hO

= 0. Solving these equations, we

get expressions of the optimal ET
u,O, EF

u,O, ET
u,O

, EF
u,O

, hO

as shown in Table III. In the table, N is the total number of
claims in the Source-Topic Matrix. SFO

u is the set of claims
the source Su indicates to be topic relevant. SFO

u is the set of
claims the source Su reports but does not indicate to be topic
relevant.

Table III
OPTIMAL SOLUTIONS OF TA-EM

Notation Solution Notation Solution

(ET
u,O)∗

∑
k∈SFO

u
ΥO(n,k)∑N

k=1
ΥO(n,k)

(EF
u,O)∗

∑
k∈SFO

u
ΥO(n,k)∑N

k=1
ΥO(n,k)

(ET
u,O

)∗
∑

k∈SFO
u ΥO(n,k)∑N

k=1
ΥO(n,k)

(EF
u,O

)∗
∑

k∈SFO
u

ΥO(n,k)∑N
k=1

ΥO(n,k)

h∗O
∑N

k=1 ΥO(n,k)

N

In summary, the input to the TA-EM scheme is the Source-
Topic Matrix ST . The output is the maximum likelihood
estimation of the topic relevance of claims and the topic
awareness of sources. Since we assume the topic relevance

Algorithm 1 Topic-Aware EM Scheme (TA-EM)
1: Initialize Θta (ET

u,O = tpu,O , EF
u,O = 0.5 × tpu,O , ET

u,O
= 0.5 ×

tpu,O , EF
u,O

= tpu,O , hO ∈ (0, 1))
2: n← 0
3: repeat
4: for Each k ∈ C do
5: compute Pr(rk = O|Xk,Θ

(n)
ta ) based on Equation (8)

6: end for
7: for Each u ∈ S do
8: compute Θ

(n)
ta based on optimal solutions which are presented in

Table III.
9: end for

10: n = n + 1
11: until Θ

(n)
ta converges

12: Let (ΥO
k )c = converged value of ΥO(n, k)

13: for Each k ∈ C do
14: if (ΥO

k )c ≥ 0.5 then
15: consider Ck as topic relevant
16: else
17: consider Ck as topic irrelevant
18: end if
19: end for
20: for Each u ∈ S do
21: calculate Ta∗u from converge values of Θta based on Equation (4)
22: end for
23: Return the MLE on the topic relevance of claims judgment on claim Ck

and the topic-awareness Ta∗u of Su.

feature of a claim is binary, we can classify claims as either
topic relevant or topic irrelevant based on the converged value
of ΥO(n, k). The convergence analysis of TA-EM is presented
in Section VII. Algorithm 1 shows the pseudocode of TA-EM.

VI. TOPIC-AWARE TRUTH DISCOVERY WITH ARBITRARY
SOURCE DEPENDENCY GRAPHS

In this section, we incorporate the TA-EM scheme from
the previous section into the truth discovery problem with
arbitrary source dependency graphs. We present a new scheme
called Topic-Aware Source-Dependent Expectation Maximiza-
tion (TASD-EM). The TASD-EM scheme jointly estimates: (i)
the topic relevance and truthfulness of each claim, and (ii) the
topic awareness and the reliability of each source.

A. Deriving the Likelihood Function

Given the terms and variables defined before, the likelihood
function L(Θtasd;X,Υ, Z) for the TASD-EM scheme can be
written as follows:

L(Θtasd;X,Υ, Z) = Pr(X,Υ, Z|Θtasd)

=
∏
k∈C

Pr(rk|Xk,Θtasd)×
∏
u∈S

Ψk,u × Pr(rk)

× Pr(zk|Xk,Θtasd)×
∏
g∈G

∏
u∈g

Ωk,g,u × Pr(zk) (10)

where Θtasd = (Θta; I1, ..., IM ; J1, ..., JM ; I1,v, ..., IM,v;
J1,v, ..., JM,v; d) is the vector of estimation parameters for
TASD-EM. Note that Θta is defined in Section V and Iu, Iu,v ,
Ju, Ju,v and d are defined in Section III. Additionally, Ψk,u

and Ωk,g,u are defined in Table II and Table IV respectively.
In Table IV, SuCk = 1 when source Su reports claim Ck

to be true and 0 otherwise. SDu,v = 1 when source Su and



Table IV
NOTATION FOR TASD-EM

Ωk,g,u Constrains

Iu |g| = 1, SuCk = 1, zk = 1
1− Iu |g| = 1, SuCk = 0, zk = 1∏

v∈g Iu,v |g| > 1, SuCk = 1, SvCk = 1, SDu,v = 1, zk = 1∏
v∈g(1− Iu,v) |g| > 1, SuCk = 0, SvCk = 1, SDu,v = 1, zk = 1

Ju |g| = 1, SuCk = 1, zk = 0
1− Ju |g| = 1, SuCk = 0, zk = 0∏

v∈g Ju,v |g| > 1, SuCk = 1, SvCk = 1, SDu,v = 1, zk = 0∏
j∈g(1− Ju,v) |g| > 1, SuCk = 0, SvCk = 1, SDu,v = 1, zk = 0

S C

SuTk

SDu,v

SuCk

rk
O

hO
rk
O

zk

d

Eu,O
T

Eu,O
T

Eu,O
F

Eu,O
F

Iu Iu,v

Ju Ju,v

Reu

Reu,v

Tau

SH SF

E − Step

M − Step

Figure 4. The E and M Steps of TASD-EM Model

source Sv have a directed dependency connection (e.g., Sv

retweets Su or replies to Su in Twitter), and SDu,v = 0 if Su

and Sv are independent of each other. The likelihood function
represents the likelihood of the observed data (i.e., ST , SC
and SD) and the values of hidden variables (i.e., Υ and Z)
given the estimation parameters (i.e., Θtasd). |g| denotes the
size of a source dependency group g. Other notations are
defined in Section III. The model structure is illustrated in
Figure 4.

B. The TASD-EM Scheme
Given the above likelihood function, we can derive E and

M steps of the proposed TASD-EM scheme. First, the E-step
is given as follows:

Q(Θtasd|Θ(n)
tasd) = E

Υ,Z|X,Θ
(n)
tasd

[logL(Θtasd;X,Υ, Z)]

=
∑
k∈C

{
Υ(n, k)×

∑
u∈S

(logΨk,u + logPr(rk))

+ Z(n, k)×
∑
g∈G

∑
u∈g

(logΩk,g,u + logPr(zk))
}

(11)

Z(n, k) = Pr(zk = 1|Xk,Θtasd). It represents the condi-
tional probability of the claim Ck to be true given the observed
data Xk and current estimate of Θtasd. Xk represents the kth

column of the Source-Topic Matrix ST and the Source-Claim
Matrix SC. Z(n, k) can be further expressed as:

Z(n, k) =
Pr(zk = 1;Xk,Θ

(n)
tasd)

Pr(Xk,Θ
(n)
tasd)

=
H(n, k)× d(n)

F (n, k)× d(n) + H(n, k)× (1− d(n))
(12)

where F (n, k) and H(n, k) are defined as:

F (n, k) = Pr(Xk,Θ
(t)
tasd|zk = 1)∏

g∈C

∏
i∈g

(ISuCk
u (1− Iu)(1−SuCk))(|g|=1)

∏
v∈g

((ISuCk && SvCk
u,v (1− Iu,v)(1−SuCk) && SvCk))SDu,v )(|g|>1)

H(n, k) = Pr(Xk,Θ
(t)
tasd|zk = 0)∏

g∈C

∏
u∈g

(JSuCk
u (1− Ju)(1−SuCk))(|g|=1)

∏
v∈g

((JSuCk && SvCk
u,v (1− Ju,v)(1−SuCk) && SvCk))SDu,v )(|g|>1)

(13)

In the M-step, as before, we choose Θ∗tasd that maximizes
the Q(Θtasd|Θ(n)

tasd) function in each iteration to be the Θ
(n+1)
tasd

for the next iteration. The optimal solutions are presented in
Table V. In the table, SHu is defined as the set of claims
source Su reports to be true and SHu,v is the set of claims
both source Su and Sv report to be true.

Table V
OPTIMAL SOLUTIONS OF TASD-EM

Notation Solution Notation Solution

(ET
u,O)∗

∑
k∈SFO

u
ΥO(n,k)∑N

k=1
ΥO(n,k)

I∗u

∑
k∈SHu

Z(n,k)∑N
k=1

Z(n,k)

(EF
u,O)∗

∑
k∈SFO

u
ΥO(n,k)∑N

k=1
ΥO(n,k)

J∗u

∑
k∈SHu

(1−Z(n,k))∑N
k=1

(1−Z(n,k))

(ET
u,O

)∗
∑

k∈SFO
u ΥO(n,k)∑N

k=1
ΥO(n,k)

I∗u,v

∑
k∈SHu,v

Z(n,k)∑
k∈SHv

Z(n,k)

(EF
u,O

)∗
∑

k∈SFO
u

ΥO(n,k)∑N
k=1

ΥO(n,k)
J∗u,v

∑
k∈SHu,v

(1−Z(n,k))∑
k∈SHv

(1−Z(n,k))

h∗O
∑N

k=1 ΥO(n,k)

N
d∗

∑N
k=1 Z(n,k)

N

In summary, the input to the TASD-EM scheme is the
Source-Topic Matrix ST , the Source-Claim Matrix SC and
the Source-Dependency Matrix SD. The output of the TASD-
EM scheme is the MLE on the topic relevance and truthfulness
of each claim as well as the topic-awareness and reliability
of each source. The convergence analysis of TASD-EM is
presented in Section VII. The pseudocode of the proposed
TASD-EM scheme is shown in Algorithm 2.

VII. EVALUATION

In this section, we conduct experiments to evaluate TA-
EM and TASD-EM schemes on three real-world data traces
collected in the aftermath of recent emergency and disaster
events. We demonstrate the effectiveness of our proposed
methods on these data traces and compare the performance of
our schemes to the state-of-the-art baselines. We first present
the experiment settings and data pre-processing steps that were
used to prepare the data for evaluation. Then we introduce
the state-of-the-art baselines and evaluation metrics we used
in evaluation. Finally, we show that the evaluation results
demonstrate: (i) TA-EM scheme can find topic relevant claims
more accurately than the compared baselines and (ii) TASD-
EM can achieve non-trivial performance gains in finding more



Algorithm 2 Topic-Aware Source-Dependent EM (TASD-
EM)
1: Initialize Θtasd (ET

u,O = tpu,O , EF
u,O = 0.5× tpu,O , ET

u,O
= 0.5×

tpu,O , EF
u,O

= tpu,O , Iu = 0.5× spu, Iu,v = 0.5, Ju = 0.5× spu,
Ju,v = 0.5, hO ∈ (0, 1), d ∈ (0, 1))

2: n← 0
3: repeat
4: for Each k ∈ C do
5: compute Pr(rk = 1|Xk,Θ

(n)
tasd) based on Equation (8)

6: compute Pr(zk = 1|Xk,Θ
(n)
tasd) based on Equation (12)

7: end for
8: for Each u ∈ S do
9: compute Θ

(n)
tasd based on optimal solutions which are presented in

Table V.
10: end for
11: n = n + 1
12: until Θ

(n)
tasd converges

13: Let (ΥO
k )c = converged value of ΥO(n, k)

14: Let (Zk)c = converged value of Z(n, k)
15: for Each k ∈ C do
16: if (Zk)c ≥ 0.5 then
17: consider Ck as True
18: else
19: consider Ck as False
20: end if
21: if (ΥO

k )c ≥ 0.5 then
22: consider Ck as topic relevant
23: else
24: consider Ck as topic irrelevant
25: end if
26: end for
27: for Each u ∈ S do
28: calculate Ta∗u, Re∗u, Re∗u,v from converge values of Θtasd based on

Equation (4)
29: end for
30: Return the MLE on the topic relevance and truthfulness of claim Ck as

well as the topic-awareness and reliability of Su.

valuable (i.e., relevant and truthful) claims compared to current
truth discovery techniques.

A. Experimental Setups and Evaluation Metrics

1) Data Traces Statistics: In this paper, we evaluate our
proposed scheme on three real-world data traces collected
from Twitter in the aftermath of recent emergency and disaster
events. Twitter has emerged as a new social sensing experiment
platform where massive observations are uploaded voluntarily
from human sensors to document the events happened in the
physical world [30]. The reported observations on Twitter may
be false or irrelevant to the topic of interests due to the open
data collection environment and unvetted data sources [2].
However, this noisy nature of Twitter actually provides us a
good opportunity to investigate the performance of the TA-EM
and TASD-EM schemes in real world social sensing scenarios.
In the evaluation, we selected three data traces: (i) Paris
Charlie Hebdo shooting event that happened on January 7,
2015; (ii) Hurricane Arthur that happened on July 3, 2014 and
(iii) Boston Marathon bombings event that happened on April
15 2013. These data traces were collected through Twitter
open API using query terms and specified geographic regions
related to the events. The statistics of the three data traces are
summarized in Table VI.

Table VI
DATA TRACES STATISTICS

Data Trace Paris Shooting Hurricane Arthur Boston Bombing

Start Date Jan. 1 2015 July 3 2014 April 15 2013
Time Duration 3 days 3 days 4 days
Location Paris North Carolina Boston
# of Tweets 39,769 27,284 63,052
# of Users Tweeted 32,391 23,106 52,583

2) Data Pre-Processing: To evaluate our methods in real-
world settings, we conducted the following data pre-processing
steps: (i) cluster similar tweets into the same cluster to generate
claims; (ii) generate the Source-Topic Matrix (ST Matrix) and
Source-Claim Matrix (SC Matrix); (iii) generate the Source
Dependency Matrix (SD Matrix) to represent arbitrary source
dependency graphs. After the above pre-processing steps, we
obtained all the inputs that are needed for the proposed
schemes: ST Matrix, SC Matrix and SD Matrix. The pre-
processing steps are summarized as follows:

Clustering: we cluster similar tweets into the same cluster
using a clustering algorithm based on K-means and a com-
monly used distance metric for micro-blog data clustering (i.e.,
Jaccard distance) [22]. In particular, the Jaccard distance is
defined as 1 − A∩B

A∪B , where A and B represents the set of
words that appear in a tweet. Hence, the more common words
two tweets share, the shorter Jaccard distance they have. We
then take each Twitter user as a source and each cluster as a
claim in our social sensing model described in Section III.

Source-Topic Matrix and Source-Claim Matrix Generation:
we first generate the ST Matrix using the topic indicator (i.e.,
hashtag: #) from the tweets. In particular, if source Su reports
the claim Ck using a hashtag in the tweet, the corresponding
element SuTk in ST matrix is set to 1. Similarly, if source Su

reports claim Ck without using a hashtag, the corresponding
element SuTk is set to −1. The element SuTk is set to 0
when source Su did not report claim Ck. Second, we generate
the SC Matrix by associating each source with the claims
he/she reported. In particular, we set the element SuCk in SC
matrix to 1 if source Su generates a tweet that belongs to
claim (cluster) Ck and 0 otherwise.

Source Dependency Matrix Generation: we generate the
Source Dependency Matrix SD based on sources’ retweeting
and replying behaviors on Twitter. In particular, we generated
the source dependency graph as an arbitrary directed graph
G = (V,E) where V represents sources and E represents their
dependency links. We used two heuristics to generate the links
in the graph: (i) a directed edge from source Su to source Sv

is added when source Sv retweets Su’s tweets; (ii) A directed
edge from source Su to Sv is added when source Sv replies
to Su’s tweets. We then constructed the Social Dependency
Matrix SD by setting the corresponding element SDu,v to
1 when Su has a directed link to Sv in G. We note that
the above heuristics are only first approximations to estimate
source dependencies from real world data. In the future, we
will explore more comprehensive techniques to further refine
our estimation of source dependency graphs.



3) Evaluation Metric: In our evaluation, we use the fol-
lowing metrics to evaluate the estimation performance of the
TA-EM and TASD-EM scheme: Precision, Recall, F1-measure
and Accuracy. Their definitions are given in Table VII.

Table VII
METRIC DEFINITIONS

Metric Definition

Precison TP
TP+FP

Recall TP
TP+FN

F1−measure 2×Precison×Recall
Precison+Recall

Accuracy TP+TN
TP+TN+FP+FN

In Table VII, TP , TN , FP and FN represents True
Positives, True Negatives, False Positives and False Negatives
respectively. We will further explain their meanings in the con-
text of experiments carried out in the following subsections.

B. Evaluation of Our Methods

In this subsection, we evaluate the performance of the
proposed TA-EM and TASD-EM scheme and compare them
to the state-of-the-art truth discovery methods.

1) Evaluation on Topic Relevance Identification: We first
evaluate the capability of TA-EM scheme to correctly identify
the topic relevant claims from noisy social sensing data.
We compared the TA-EM with several baselines. The first
one is Voting: it simply assumes the topic relevance of a
claim is reflected by the number of times it is repeated on
Twitter: the more repetitions of a claim, the more likely it
is relevant to a topic of interests. The second baseline is the
Hashtag: it considers a claim to be topic relevant if the claim
contains the hashtag related to the specified topic. The third
baseline is the HIST (Hyperlink-Induced Topic Search) [15]:
it assumes a linear relationship between the source’s topic
awareness and the claim’s topic relevance. The last baseline
is the TruthFinder [39]: it can estimate the topic relevance of
a claim using a heuristic based pesudo-probabilistic model.

In our evaluation, the outputs of the above schemes were
manually graded to determine their performance on topic
relevant claim identification. Due to man-power limitations,
we generated the evaluation set by taking the union of the top
50 relevant claims returned by each scheme to avoid possible
sampling bias towards any particular scheme. We collected the
ground truth of the evaluation set using the following rubric:
• Topic Relevant Claims: claims that describe a physical

or social event which is clearly related with a chosen
topic (e.g., Paris Shooting, Hurricane Arthur, or Boston
Bombing in our selected datasets).

• Topic Irrelevant Claims: claims that do not meet the
definition of the topic relevant claims.

In our evaluation, the True Positives and True Negatives are
the claims that are correctly classified by a particular scheme
as topic relevant and irrelevant ones respectively. The False
Positives and False Negatives are the irrelevant and relevant
claims that are misclassified to each other respectively.

The evaluation results of Paris Shooting data trace are
shown in Figure 5. We can observe that TA-EM outperforms
the compared baselines in all evaluation metrics. The largest
performance gain achieved by TA-EM on F1-measure and
accuracy over the best performed baseline (i.e., Hashtag) are
10% and 20% respectively. The results of Hurricane Arthur
data trace are presented in Figure 6. TA-EM continues to
outperform all baselines and the largest performance gain
achieved by TA-EM on F1-measure and accuracy is 13% and
16% respectively. The results of Boston Bombing data trace
are similar and are not presented due to space limit.
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Figure 5. Topic Relevance Identification on Paris Shooting Trace
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Figure 6. Topic Relevance Identification on Hurricane Arthur Trace

We also perform the convergence analysis of the TA-EM
scheme and the results are presented in Figure 7. We observe
the TA-EM scheme converges within a few iterations on all
three data traces. The encouraging results from the real world
data traces demonstrate the effectiveness of using TA-EM
scheme to correctly identify the topic relevant claims from
noisy social sensing data.

2) Estimation Performance on Topic-Aware Truth Discov-
ery: In the evaluation of TASD-EM scheme, we consider four
variants of the TASD-EM: (i) SD-EM-RT: a simplified version
of TASD-EM scheme which does not include the topic rele-
vance identification of claims. The source dependency graphs
are constructed by using the retweet relationship between
sources; (ii) SD-EM-Re: it is similar as the SD-EM-RT scheme
but the source dependency graphs are constructed by using
the reply relationship between sources; (iii) TASD-EM-RT: the
full version of TASD-EM scheme that considers both topic
relevance identification of claims and the source dependency
graphs built by using the retweet relationship; (iv) TASD-EM-
Re: it is similar as TASD-EM-RT but the source dependency
graphs are built by using the reply relationship.

We compare the TASD-EM scheme and its variants with
the state-of-the-art truth discovery solutions in social sensing
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(a) Paris Shooting Trace
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(c) Boston Bombing Trace
Figure 7. Convergence Rate of TA-EM

literature. The first one is IPSN12 [33]: it computes the claims’
truthfulness and sources’ reliability in an iterative way and
has been shown to outperform four fact-finding techniques in
identifying truthful claims from social sensing data. However,
it assume sources are all independent. The second baseline
is IPSN14 [30], it extends IPSN12 by explicitly considering
the social dependency graphs as a set of disjoint trees. In
our evaluation, we also consider two variants of IPSN14:
IPSN14-RT (i.e., using the retweet relationship to build source
dependency graphs) and IPSN14-Re (i.e., using the reply
relationship to build source dependency graphs). We evaluate
the performance of our proposed scheme and its variants (i.e.,
TASD-EM-RT, TASD-EM-Re, SD-EM-RT and SD-EM-Re) and
compare them with the discussed truth discovery schemes and
a few other state-of-art baselines (i.e., IPSN14-RT, IPSN14-Re,
Regular-EM, TruthFinder, HIST and Voting).

To incorporate both topic relevance and truthfulness of
claims into our evaluation, we generalized the concept of a
truthful claim from the truth discovery problem to a valuable
claim in the topic-aware truth discovery problem. In particular,
a valuable claim is defined as a claim that is both truthful
and relevant to the specified topic of interests. The valuable
claims are the ones that are eventually useful in the decision
making process. Similarly as the topic relevance identification
evaluation, we generated the evaluation set by taking the
union of the top 50 claims returned by different schemes.
We collected the ground truth of the evaluation set using the
following rubric:
• Valuable Claims: Claims that are statements of a physical

or social event, which is related to the selected topic
(i.e., Paris Shooting, Hurricane Arthur, or Boston Bomb-
ing) and generally observable by multiple independent
observers and corroborated by credible sources external
to Twitter (e.g., mainstream news media).

• Unconfirmed Claims: Claims that do not satisfy the
requirement of valuable claims.

We notice that unconfirmed claims may include the val-
ueless claims and some possibly valuable claims that cannot
be independently verified by external sources. Hence, our
evaluation provides pessimistic performance bounds on the es-
timation results by taking the unconfirmed claims as valueless.
The True Positives and True Negatives in this experiment are
the claims that are correctly classified by a particular scheme
as valuable and valueless ones respectively. The False Positives
and False Negatives are the valueless and valuable claims that
are misclassified to each other respectively.
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Figure 8. Estimation Results of Truth Discovery on Paris Shooting Trace

Precision Recall F1−measure Accuracy
0

0.2

0.4

0.6

0.8

1

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

 

 

TASD−EM
SD−EM
IPSN14
IPSN12
TruthFinder
Voting

Figure 9. Estimation Results of Truth Discovery on Hurricane Arthur Trace

The evaluation results of Paris Shooting data trace are shown
in Figure 8. We only showed the best performed variant of a
scheme in the Figure (e.g., TASD-EM is actually TASD-EM-
RT). The full evaluation results of all schemes are presented
in Table VIII. We observe that the proposed schemes (i.e.,
TASD-EM, SD-EM) outperform all baselines. Specifically, the
largest performance gain achieved by TASD-EM compared
to the best performed baseline (i.e., IPSN14) on precision,
recall, F1-measure and accuracy is 14%, 7%, 10% and 9%
respectively. The results on Hurricane Arthur data trace are
shown in Figure 9 and Table IX. We observe that our TASD-
EM continues to outperform the compared baselines and the
largest performance gain it achieved over the best performed
baseline on precision, recall, F1-measure and accuracy is 13%,
10%, 11% and 7% respectively. We do present them here due
to space limit. The performance improvements of TASD-EM
are achieved by explicitly considering the topic relevance
feature of claims and arbitrary source dependency graphs
in social sensing, which are missing from the state-of-the-art
solutions. Finally, we perform the convergence analysis of the
TASD-EM scheme on the three data traces and the results are
presented in Figure 10. We observe the TASD-EM scheme
converges quickly on all data traces.
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(a) Paris Shooting Trace
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(c) Boston Bombing Trace
Figure 10. Convergence Rate of TASD-EM

Table VIII
EVALUATION RESULTS ON PARIS SHOOTING DATA TRACE

Method Precision Recall F1-measure Accuracy

TASD-EM-RT 0.8327 0.8261 0.8293 0.8012
TASD-EM-Reply 0.8063 0.8227 0.8144 0.7875
SD-EM-RT 0.7672 0.8054 0.7858 0.7541
SD-EM-Reply 0.7278 0.7732 0.7498 0.7367
IPSN14-RT 0.6875 0.7604 0.7221 0.7162
IPSN14-Reply 0.6594 0.7282 0.6921 0.6643
IPSN12 0.6287 0.6369 0.6327 0.6502
TruthFinding 0.5535 0.6083 0.5796 0.6241
HIST 0.5784 0.6027 0.5903 0.5816
Voting 0.5387 0.5914 0.5638 0.5695

Table IX
EVALUATION RESULTS ON HURRICANE ARTHUR TRACE

Method Precision Recall F1-measure Accuracy

TASD-EM-RT 0.7633 0.7485 0.7558 0.7029
TASD-EM-Reply 0.7381 0.7096 0.7235 0.6884
SD-EM-RT 0.6805 0.7013 0.6907 0.6728
SD-EM-Reply 0.6585 0.6728 0.6656 0.6357
IPSN14-RT 0.6352 0.6489 0.6419 0.6281
IPSN14-Reply 0.6128 0.6287 0.6206 0.5983
IPSN12 0.5687 0.5910 0.5796 0.5428
TruthFinding 0.5192 0.5607 0.5392 0.49858
HIST 0.4815 0.5795 0.5259 0.4716
Voting 0.4627 0.5812 0.5152 0.4395

VIII. DISCUSSIONS AND LIMITATIONS

In this paper, we focus on a single general topic of the
selected event (e.g., Paris Shooting, Hurricane Arthur, or
Boston Bombing). However, subtopics could also exist under
the general topic of the event. For example, in the aftermath
of an earthquake, people may report their observations on
different aspects of the disaster (e.g., damage, rescue, resource
allocation, disease spread). Each aspect of the event can be
considered as a subtopic. Our analytical framework can be
easily extended to handle multiple independent features of
claims. For example, we can apply a simple extension of TA-
EM to incorporate multiple independent subtopics of an event
by assigning a vector of hidden variable for each subtopic.
This task becomes more challenging when the subtopics
are dependent (e.g., claims reporting rescue progress can
be related to claims reporting the damage in the same area).
Recent work in social sensing has made good progress to
address the dependencies between claims [28]. We can borrow
insights from the previous work on claim dependency to han-
dle dependent subtopics of claims in an extended framework.

It would also be interesting to investigate the possibility

of developing a fully Bayesian approach to solve the truth
discovery problem in social sensing. This approach will enable
additional indications of confidence on the truth discovery re-
sults, which could be tremendously useful for the analysts and
decision makers to understand the uncertainties in the analysis
results. In a different line of work, we have started to develop
accuracy bounds to rigorously quantify the quality of the truth
discovery results in social sensing using estimation theoretical
approaches [32]. We will further explore the possibility of
using a fully Bayesian approach to address the uncertainty
problem.

Finally, we should note that the topic aware social sensing
model with arbitrary source dependency graphs developed in
this paper is not only applicable to applications based on
Twitter. It can be also applied to a much broader set of
social sensing applications, where the data are collected from
both human sensors or the devices on their behalf. Examples
include reporting the number of available fitness machines in
a gym, reporting locations of potholes on city streets and
reporting the invasive species in a national park. In these
applications, humans sources could also generate irrelevant
measurements (e.g., by misidentifying the target objects or
performing the wrong operations) and forward unverified
reports they received from other sources. Our solution can be
used to address similar truth discovery and source dependency
problems in these applications.

IX. CONCLUSION

This paper develops a multi-dimensional maximum like-
lihood estimation framework to solve the topic-aware truth
discovery problem with arbitrary source dependency graphs
in social sensing applications. The framework explicitly in-
corporates both the topic relevance feature of claims and ar-
bitrary source dependencies into the truth discovery solutions.
The proposed approach jointly estimates the topic awareness
and reliability of sources as well as the topic relevance
and truthfulness of claims using expectation maximization
schemes. We evaluated our solution (i.e., TA-EM and TASD-
EM scheme) using three real world data traces collected from
Twitter. The results showed that our solution achieved non-
trivial performance gains in correctly identifying topic relevant
and truthful claims compared to the state-of-the-art baselines.
The results of the paper is important because it lays out a
solid analytical foundation to explore both the topic relevance
feature of claims and arbitrary source dependency graphs in
social sensing applications using a principled approach.
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