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Abstract—Correctness guarantees are at the core of cyber-
physical computing research. While prior research addressed
correctness of timing behavior and correctness of program logic,
this paper tackles the emerging topic of assessing correctness
of input data. This topic is motivated by the desire to crowd-
source sensing tasks, an act we henceforth call social sensing, in
applications with humans in the loop. A key challenge in social
sensing is that the reliability of sources is generally unknown,
which makes it difficult to assess the correctness of collected
observations. To address this challenge, we adopt a cyber-physical
approach, where assessment of correctness of individual obser-
vations is aided by knowledge of physical constraints on sources
and observed variables to compensate for the lack of information
on source reliability. We cast the problem as one of Maximum
Likelihood Estimation (MLE). The goal is to jointly estimate
both (i) the latent physical state of the observed environment,
and (ii) the inferred reliability of individual sources such that
they are maximally consistent with both provenance information
(who reported what) and physical constraints. We also derive
new analytic bounds that allow the social sensing applications to
accurately quantify the estimation error of source reliability for
given confidence levels. We evaluate the framework through both
a real-world social sensing application and extensive simulation
studies. The results demonstrate significant performance gains
in estimation accuracy of the new algorithms and verify the
correctness of the analytic bounds we derived.

Keywords—social sensing, cyber-physical computing, maximum
likelihood estimation, physical constraint, analytic bounds

I. INTRODUCTION

Attainment of correctness guarantees lies at the core of
cyber-physical computing research. Prior research focused on
guarantees of timing correctness and guarantees of functional
correctness. In contrast, this paper investigates guarantees on
data correctness.

The paper is motivated by the proliferation of cyber-physical
applications with humans in the loop. For example, humans
are the drivers in transportation systems, the consumers in
smart grid applications, the first responders in disaster response
systems, and the decision makers for sustainable ecosystems.
As such, they can play a pivotal role in monitoring and
reporting system state; an act we call social sensing.

We refer by social sensing applications to a broad set
of applications, where sources, such as humans and digital

devices they operate, collect information about the physical
world for purposes of mutual interest. The proliferation of
mobile devices with sensors, such as smartphones, has sig-
nificantly increased the popularity of social sensing. Recent
applications include optimization of daily commute [65], re-
duction of carbon footprint [24], disaster response [19] and
pollution monitoring [32], to name a few. Due to the inclusive
nature of data collection in social sensing (i.e., anyone can
participate) and the unknown reliability of information sources,
much recent work focused on estimating the likelihood of
correctness of collected data [37], [40], [63]. However, none
of these work considered the physical constraints in their
solutions due to the lack of explicit physical components in
their application scenarios. Considering the tight integration
of human, cyber and physical components in cyber-physical
systems, this paper describes algorithms and analytic bounds
to improve the reliability of social sensing applications by
exploiting physical constraints.

Following the methodology reported in our earlier confer-
ence publication [54], we adopt a cyber-physical approach to
the problem of assessing correctness of collected data and
obtaining the analytic bounds on source reliability, wherein
physical constraints are exploited to compensate for un-
known source reliability. We consider two types of constraints;
namely, (i) source constraints that, combined with source
location information, offer an understanding of what individual
sources observed, and (ii) constraints on the observed variables
themselves that arise when these variables are not independent.
Together, these constraints shape the likelihood function that
quantifies the odds of the observations at hand. We then use a
maximum likelihood estimation framework to jointly compute
both the reliability of sources and the correctness of the data
they report, such that the likelihood function is maximized.
This framework was first reported in [57], but without taking
physical constraints into account. The advantage of maximum-
likelihood estimation lies in the feasibility of computing rigor-
ous estimation accuracy bounds [56], hence not only arriving
at the top hypothesis, but also quantifying how good it is.

In contrast to our prior work [54], [57], in this extended
journal version, we derive new analytic bounds on estima-
tion error that allow estimating confidence intervals in the
(originally unknown) source reliability values. To the best of
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our knowledge, the derived analytic bounds in this paper are
the first ones that explicitly consider the physical constraints
in social sensing applications. We show that the maximum
likelihood estimate obtained is a lot more accurate than one
that does not take physical constraints into account and the
analytic bounds we obtained correctly quantify the errors in
the maximum likelihood estimation.

Much prior research in cyber-physical systems (CPS) [21],
[51] and estimation theory [14], [39] considered filtering
observations of continuous variables in a maximum-likelihood
fashion to separate signal from noise. While continuous vari-
ables are common in cyber-physical computing, an important
subset of CPS applications deals primarily with discrete (and
especially binary) variables. Interestingly, noise reduction in
the case of binary variables is more challenging, because
discretization gives rise to likelihood functions that are not
continuous, hence leading to integer programming problems,
known to be NP-complete. In this paper, we focused on a
discrete variable scenario and formulated a reliable social
sensing problem.

Our work is related to machine learning literature on con-
strained conditional models [6], [37]. Unlike that literature,
we do not limit our approach to simple linear models [6] nor
require that constraints and constraints be deterministic [37].
Instead, the framework developed in this paper is general
enough to (i) solve the optimization problem for non-linear
models abstracted from social sensing applications with phys-
ical constraints (as shown in Section III and IV), and (ii)
incorporate probabilistic constraints.

Finally, contrary to work that focuses on maximum-
likelihood estimation of continuous variables given continuous
models of physical phenomena, which appears in both cyber-
physical systems and data fusion literature [21], [31], [51], we
focus on estimating discrete variables. Specifically, we estimate
the values of a string of generally non-independent Booleans
that can either be true or false. The discrete nature of the
estimated variables makes our optimization problem harder, as
it gives rise to an integer programming problem whose solution
space increases exponentially. We show that the complexity of
our results critically depends on the number of variables that
appear in an individual constraint, as opposed to the number
of variables in the system. Hence, the approach scales well to
large numbers of estimated variables as long as constraints are
localized. We evaluate the scheme through both a real-world
social sensing application and extensive simulation studies.
Results show significant performance improvements in both
source reliability and variable classification as well as the
effectiveness of the analytic bounds we derived, achieved by
incorporating physical information into the estimation frame-
work.

The rest of the paper is organized as follows. Section II
formulates the problem of reliable social sensing. Section III
and Section IV solve the problem while leveraging source
constraints and observed variable constraints, respectively. The
new analytic bounds to quantify the estimation errors in
source reliability are shown in Section V. Evaluation results
are presented in Section VI. The discussion is presented in
Section VII. We review the related work in Section VIII.

Finally, we conclude the paper in Section IX.

II. THE PROBLEM FORMULATION

Binary variables arise in many applications where the state
of the physical environment can be represented by a set of
statements, each is either true or false. For example, in an
application where the goal is to find free parking spots around
campus, each legal parking spot may be associated with one
variable that is true if the spot is available and false otherwise.
Similarly, in an application that reports offensive graffiti on
campus walls, each location may be associated with a variable
that is true if offensive graffiti is present and false otherwise. In
general, any statement about the physical world, such as “Main
Street is flooded”, “The airport is closed”, or “The suspect was
seen on Elm Street” can be thought of as a binary variable
whose value is true if the statement is correct, and false if it
is not.

Accordingly, in this paper, we consider social sensing ap-
plications, where a group of M sources, S1, ..., SM , observe a
set of N binary variables, C1, ..., CN . The value of a variable
Cj can be either true or false. The true value represents the
positive state of the variable while the false value represents
the negative state. Each variable Cj is also associated with
a location, Lj . We assume, without loss of generality, that
the “normal” state of each variable is negative (e.g., no free
parking spots and no graffiti on walls). Hence, sources report
only when a positive value is encountered. As mentioned
above, the reliability of individual sources is not known. In
other words, we do not know the “noise model” that determines
the odds that a source reports incorrectly.

In this paper, we exploit physical constraints to compensate
for the lack of information on source reliability. Two types of
physical constraints are exploited:
• Constraints on sources: A source constraint simply

states that a source can only observe co-located physical
variables. In other words, it can only report Cj if it
visited location Lj . The granularity of locations is appli-
cation specific. However, given location granularity in a
particular application context, this constraint allows us to
understand which variables a source had an opportunity
to observe. Hence, for example, when a source does
not report an event that others report they observed,
we can tell whether or not the silence should decrease
our confidence in the reported observation, depending
on whether or not the silent source was co-located with
the alleged event.

• Constraints on observed variables: We exploit the fact
that observed variables may be correlated, which can be
expressed by a joint probability distribution on the un-
derlying variables. For example, traffic speed at different
locations of the same freeway may be related by a joint
probability distribution that favors similar speeds. This
probabilistic knowledge gives us a basis for assessing
how internally consistent a set of reported observations
is.

Let Si represent the ith source and Cj represent the jth vari-
able. We say that Si observed Cj if the source visited location
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Lj . We say that a source Si made a reported observation
SiCj if the source reported that the value of Cj was true.
We generically denote by p(Cj = 1|x) and p(Cj = 0|x)
the conditional probability that the value of variable Cj is
indeed true or false, given x, respectively. We denote by ti the
(unknown) probability that the value of a randomly chosen
variable is true given that source Si reported it (to be true).
Formally, ti is given by:

ti = p(Cj = 1|SiCj) (1)

Note that Cj in the definition of ti is an arbitrary variable so
ti represents the probability that the value of a variable is true
conditioned on the knowledge that source i has espoused the
truthfulness of the variable. Hence, ti does not depend on the
variable index j.

Different sources may report different numbers of observa-
tions. The probability that source Si reports an observation is
si. Formally, si = p(SiCj |Si observes Cj).

We further define ai to be the (unknown) probability that
source Si correctly reports an observation given that the value
of the underlying variable is indeed true and the source ob-
served it. Similarly, we denote by bi the (unknown) probability
that source Si falsely reports an observation when the value
of the underlying variable is in reality false and the source
observed it. More formally:

ai = p(SiCj |Cj = 1, Si observes Cj)

bi = p(SiCj |Cj = 0, Si observes Cj) (2)

From the definitions above, we can determine the following
relationships using the Bayes theorem:

ai = p(SiCj |Cj = 1, Si observes Cj)

=
p(Cj = 1|SiCj , Si observes Cj)× p(SiCj |Si observes Cj)

p(Cj = 1|Si observes Cj)

bi = p(SiCj |Cj = 0, Si observes Cj)

=
p(Cj = 0|SiCj , Si observes Cj)× p(SiCj |Si observes Cj)

p(Cj = 0|Si observes Cj)
(3)

We also define di to be the (unknown) probability p(Cj =
1|Si observes Cj). It should be noted that Cj in the definition
of di represents a variable randomly chosen from all variables
observed by Si. So di does not depend on the variable index
j. This probability describes the proportion of variables that
source Si observes that happen to have true values. Note
that, the probability that a source reports an observation is
proportional to the number of variables reported by the source
over the total number of variables observed by the source.
In this paper, we assume sources only report variables it
has an opportunity to observe (e.g., a car will only report
the observation of a traffic light location when the car has
an opportunity to visit that location). Under this assumption,
ti = p(Cj = 1|SiCj , Si observes Cj). Plugging these terms
into the definition of ai and bi, given in Equation (3), we get

the relationship between the terms we defined above:

ai =
ti × si
di

bi =
(1− ti)× si

1− di
di = p(Cj = 1|Si observes Cj) (4)

The input to our algorithm is: (i) the observation matrix SC,
where SCij = 1 when source Si reports that the value of
Cj is true, and SCij = 0 otherwise; and (ii) the source’s
opportunities to observe represented by a knowledge matrix
SK , where SKij = 1 when source Si has the opportunity
to observe Cj and SKij = 0 otherwise. The output of the
algorithm is the probability that the value of variable Cj is
true, for each j and the reliability ti of source Si, for each i.
More formally:

∀j, 1 ≤ j ≤ N : p(Cj = 1|SC, SK)

∀i, 1 ≤ i ≤ M : p(Cj = 1|SiCj) (5)

To account for non-independence among the observed vari-
ables, we further denote the set of all such constraints (ex-
pressed as joint distributions of dependent variables) by JD.
The inputs to the algorithm become the SC, SK matrices
and the set JD of constraints (joint distributions), mentioned
above. The output is:

∀j, 1 ≤ j ≤ N : p(Cj = 1|SC, SK, JD)

∀i, 1 ≤ i ≤ M : p(Cj = 1|SiCj) (6)

Below, we solve the aforementioned problems using the ex-
pectation maximization (EM) algorithm. EM [10] is a general
algorithm for finding the maximum likelihood estimates of
parameters in a statistic model, where the likelihood function
involves latent variables. Applying EM requires formulating
the likelihood function, L(θ;X,Z) = p(X,Z|θ), where θ is
the estimated parameter vector, X is the observed data, and
Z is the latent variables vector. The algorithm then maximizes
likelihood iteratively by alternating between two steps [17]:
• E-step: Compute the log likelihood function for the M-

step

Q
(
θ|θ(n)

)
= EZ|X,θ(n) [logL(θ;X,Z)] (7)

• M-step: Maximize the Q function in the E-step

θ(n+1) = argmax
θ

Q
(
θ|θ(n)

)
(8)

Following the approach described in our previous work [57],
we define a latent variable zj to denote our estimated value
of variable Cj , for each j (indicating whether the value of
Cj is true or not). Initially, we set p(zj = 1) = dj . This
constitutes the latent vector Z above. We further define X to
be the observation matrix SC, where Xj represents the jth

column of the SC matrix (i.e., reported observations of the
jth variable by all sources). The parameter vector we want to
estimate is θ = (a1, a2, ...aM ;b1, b2, ...bM ;d1, d2, ..., dN ).
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III. ACCOUNTING FOR OPPORTUNITY TO OBSERVE

In this section, we incorporate the source constraints into
the Expectation-Maximization (EM) algorithm. We call this
EM scheme, EM with opportunity to observe (OtO EM).

A. Deriving the Likelihood
When we consider source constraints in the likelihood func-

tion, we assume sources only report variables they observe, and
hence the probability of a source reporting a variable he/she
does not have an opportunity to observe is 0. For simplicity,
we first assume that all variables are independent, then relax
this assumption later in Section IV. Under these assumptions,
the new likelihood function L(θ;X,Z) that incorporates the
source constraints is given by:

L(θ;X,Z) = p(X,Z|θ)

=
N∏

j=1

p(zj)× p(Xj |zj , θ)

=
N∏

j=1

∏

i∈Sj

p(zj)× αi,j

where Sj : Set of sources observed Cj

(9)

where

p(zj) =

{
dj zj = 1
(1− dj) zj = 0

αi,j =

⎧
⎪⎪⎨

⎪⎪⎩

ai zj = 1, SiCj = 1
(1 − ai) zj = 1, SiCj = 0
bi zj = 0, SiCj = 1
(1 − bi) zj = 0, SiCj = 0

(10)

Note that, in the likelihood function, we only consider the
probability contribution from sources who actually observe a
variable (e.g., i ∈ Sj for Cj ). This is an important change from
our previous framework [57]. This change allows us to nicely
incorporate the source constraints (name, source opportunity to
observe) into the maximum likelihood estimation framework.

Using the above likelihood function, we can derive the
corresponding E-Step and M-Step of OtO EM scheme. The
detailed derivations are shown in Section X-A.

B. The OtO EM Algorithm
In summary, the inputs to the OtO EM algorithm are (i) the

observation matrix SC from social sensing data and (ii) the
knowledge matrix SK describing the source constraints. The
output is the maximum likelihood estimate of source reliability
and the binary variable classification. Compared to the regular
EM algorithm we derived in our previous work [57], we
provided source constraints as a new input into the framework
and imposed them on the E-step and M-step. Our algorithm
begins by initializing the parameter θ with random values
between 0 and 1. The algorithm then performs the new derived
E-steps and M-steps iteratively until θ converges. Convergence

Algorithm 1 Expectation Maximization Algorithm with
Source Constraints (OtO EM)
1: Initialize θ with random values between 0 and 1
2: while θ(n) does not converge do
3: for j = 1 : N do
4: compute Z(t, j) based on Equation (23)
5: end for
6: θ(n+1) = θ(n)

7: for i = 1 : M do
8: compute a(n+1)

i , b(n+1)
i , d(n+1)

j based on Equation (24)
9: update a(n)

i , b(n)
i , d(n)

j with a(n+1)
i , b(n+1)

i , d(n+1)
j in θ(n+1)

10: end for
11: t = t+ 1
12: end while
13: Let Zc

j = converged value of Z(t, j)

14: Let aci = converged value of a(n)
i ; bci = converged value of b(n)

i ;
dci = converged value of d(n)

j j ∈ Ci
15: for j = 1 : N do
16: if Zc

j ≥ threshold then
17: the value of Cj is true
18: else
19: Cj is false
20: end if
21: end for
22: for i = 1 : M do
23: calculate t∗i from aci , bci and dci
24: end for
25: Return the classification on variables and reliability estimation of sources

analysis for EM was studied in literature and is out of the
scope for this paper [61].1 Since each observed variable is
binary, we can classify variables as either true or false based on
the converged value of Z(t, j). Specifically, Cj is considered
true if Zc

j goes beyond some threshold (e.g., 0.5) and false
otherwise. We can also compute the estimated ti of each source
from the converged values of θ(n) (i.e., aci , bci and dci ) based
on Equation (4). Algorithm 1 shows the pseudocode of OtO
EM.

IV. ACCOUNTING FOR VARIABLE CONSTRAINTS

In this section, we derive an EM scheme that considers
constraints on observed variables. We call this EM scheme,
EM with dependent variables (DV EM). For clarity, we first
ignore the source constraints derived in the previous section
(i.e., assume that each source observes all variables) when
we derive the DV EM scheme. Then, we combine the two
extensions of EM we derived (i.e., OtO EM and DV EM)
to obtain a comprehensive EM scheme (OtO+DV EM) that
incorporates constraints on both sources and observed variables
into the estimation framework.

A. Deriving the Likelihood
In order to derive a likelihood function that considers con-

straints in the form of constraints between observed variables,
we first divide the N observed variables in our social sensing
model into G independent groups, where each independent

1In practice, we can run the algorithm until the difference of estimation
parameter between consecutive iterations becomes insignificant.
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group contains variables that are related by some local con-
straints (e.g., gas price of stations in the same neighborhood
could be highly correlated). Consider group g, where there
are k dependent variables g1, ..., gk. Let p(zg1 , ..., zgk) rep-
resent the joint probability distribution of the k variables
and let Yg represent all possible combinations of values of
g1, ..., gk. For example, when there are only two variables,
Yg = [(1, 1), (1, 0), (0, 1), (0, 0)]. Note that, we assume that
p(zg1 , ..., zgk) is known or can be estimated from prior knowl-
edge. The new likelihood function L(θ;X,Z) that considers
the aforementioned constraints is:

L(θ;X,Z) =
∏

g∈G

p(Xg, Zg|θ) =
∏

g∈G

p(Zg)× p(Xg|Zg, θ)

=
∏

g∈G

⎧
⎨

⎩
∑

g1,...,gk∈Yg

p(zg1 , ..., zgk)
∏

i∈M

∏

j∈cg

αi,j

⎫
⎬

⎭ (11)

where αi,j is the same as defined in Equation (10) and cg
represents the set of variables belonging to the independent
group g. Compared to our previous effort [57], the new
likelihood function is formulated with independent groups
as units (instead of single independent variables). The joint
probability distribution of all dependent variables within a
group is used to replace the distribution of a single variable.
This likelihood function is therefore more general, but reduces
to the previous form in the special case where each group is
composed of only one variable.

Using the above likelihood function, we can derive the cor-
responding E-Step and M-Step of DV EM and OtO+DV EM
schemes. The detailed derivations are shown in Section X-B.

B. The OtO+DV Algorithm

In summary, the OtO+DV EM scheme incorporates con-
straints on both sources and observed variables. The inputs
to the algorithm are (i) the observation matrix SC, (ii) the
knowledge matrix SK , and (iii) the joint distribution for each
group of dependent variables, collectively represented by set
JD. The output is the maximum likelihood estimate of source
reliability and binary variable classification. The OtO+DV EM
pseudocode is shown in Algorithm 2.

V. THE ANALYTIC BOUND

In the previous section, we derived the OtO, DV, OtO+DV EM
schemes to address the constraints on both sources and the
observed variables. However, one important question remains:
how to quantify the accuracy of the estimation results? In par-
ticular, we are interested in obtaining the confidence intervals;
namely, the error bounds on the estimation parameters of our
model for a given confidence level. In this section, we derive
such bounds by using the Cramer-Rao lower bounds (CRLB)
from estimation theory. We should note that the CRLBs derived
here are assuming that enough sources are available so that the
truth of the variable (or not) is known with full accuracy. As
a result, the CRLBs are asymptotic results.

Algorithm 2 Expectation Maximization Algorithm with Con-
straints on Both Sources and Observed Variables (OtO+DV
EM)
1: Initialize θ with random values between 0 and 1
2: while θ(n) does not converge do
3: for j = 1 : N do
4: compute Z(n, j) as the marginal distribution of the joint probability

as shown in Equation (28)
5: end for
6: θ(n+1) = θ(n)

7: for i = 1 : M do
8: compute a(n+1)

i , b(n+1)
i , d(n+1)

j based on Equation (29)
9: update a

(n)
i , b

(n)
i , d

(n)
j with a

(n+1)
i , b

(n+1)
i , d

(n+1)
j in θ(n+1)

10: end for
11: t = t+ 1
12: end while
13: Let Zc

j = converged value of Z(n, j)

14: Let aci = converged value of a(n)
i ; bci = converged value of b(n)

i ;
dci = converged value of d(n)

j j ∈ Ci
15: for j = 1 : N do
16: if Zc

j ≥ threshold then
17: the value of Cj is true
18: else
19: Cj is false
20: end if
21: end for
22: for i = 1 : M do
23: calculate t∗i from aci , bci and dcj
24: end for
25: Return the classification on variables and reliability estimation of sources

A. Deriving Error Bounds

We start with the derivation of Cramer-Rao lower bounds for
our problem. The CRLB states the lower bounds of estimation
variance that can be achieved by the maximum likelihood
estimation (MLE). By definition of CRLB, it is given by

CRLB = J−1 (12)

where

J = E[▽θ ln p(X |θ)▽H
θ ln p(X |θ)] (13)

where J is the Fisher information of the estimation param-
eter, ▽θ = ( ∂

∂a1
, ... ∂

∂aM
, ∂
∂b1

, ...., ∂
∂bM

)H and H denotes the
conjugate transpose operation.

In this subsection, we derive the asymptotic CRLBs for
OtO EM, DV EM, and OtO+DV EM based on the assumption
that the values of variables are correctly estimated by the EM
algorithms. This is a reasonable assumption when the number
of sources is enough [56]. We denote the log-likelihood
function obtained under this assumption as lem(x; θ).

We compute the Fisher Information Matrix from its def-
inition. Note that CRLB should use the actual ground truth
values of ai and bi. However, due to the lack of ground
truth in many real world applications, the maximum likelihood
estimation (MLE) values of ai and bi are incorporated here as
a means to approximate the expected variance. We can derive
the representative element of Fisher Information Matrix from
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N variables as:

(J(θ̂MLE))i,j (14)

=

⎧
⎪⎪⎨

⎪⎪⎩

0 i ̸= j

−EX

[∂2lem(x;ai)
∂a2

i
|ai=âMLE

i

]
i = j ∈ [1,M ]

−EX

[∂2lem(x;bi)
∂b2i

|bi=b̂MLE
i

]
i = j ∈ (M, 2M ]

For the OtO EM, the log-likelihood function lem(x; θ) can
be written as follows:

lem(x; θ) =
N∑

j=1

{

zj ×
[ ∑

i∈Sj

(SiCj log ai + (1− SiCj) log(1− ai) + log dj)
]

+ (1− zj)×
[ ∑

i∈Sj

(SiCj log bi + (1 −Xij) log(1− bi)

+ log(1− dj))
]}

(15)

where zj is the converged value of Z(n, j) in (23).
Substituting the log-likelihood function in Equation (15) into

Equation (14), the CRLB of OtO EM (i.e., the inverse of the
Fisher Information Matrix) can be written as:

CRLBOtO = =

⎧
⎪⎨

⎪⎩

0 i ̸= j
âMLE
i ×(1−âMLE

i )
Ci×di

i = j ∈ [1,M ]
b̂MLE
i ×(1−b̂MLE

i )
Ci×(1−di)

i = j ∈ (M, 2M ]
(16)

where Ci is the set of variables that Si observed and di is
defined in Equations (4). The âMLE

i , b̂MLE
i are derived in

Appendix X-A and the results are shown by Equation (24).
Following similar derivation steps, we can also derive the

CRLB of DV EM as:

CRLBDV = =

⎧
⎪⎨

⎪⎩

0 i ̸= j
âMLE
i ×(1−âMLE

i )
N×d i = j ∈ [1,M ]

b̂MLE
i ×(1−b̂MLE

i )
N×(1−d) i = j ∈ (M, 2M ]

(17)

where the âMLE
i , b̂MLE

i are derived in Appendix X-B and the
results are shown by Equation (27).

Finally, the CRLB of OtO+DV EM can derived as:

CRLBOtO+DV = =

⎧
⎪⎨

⎪⎩

0 i ̸= j
âMLE
i ×(1−âMLE

i )
Ci×di

i = j ∈ [1,M ]
b̂MLE
i ×(1−b̂MLE

i )
Ci×(1−di)

i = j ∈ (M, 2M ]
(18)

where the âMLE
i , b̂MLE

i are derived in Appendix X-B and the
results are shown by Equation (29).

B. The Confidence Interval
In this subsection, we show that the confidence interval of

source reliability (i.e., the probability a source Si makes a
correct observation) can be obtained by using the CRLB we
just derived and the asymptotic normality of the maximum
likelihood estimation.

One of the attractive asymptotic properties about maximum
likelihood estimator is called asymptotic normality: The MLE
estimator is asymptotically distributed with Gaussian behavior
as the data sample size goes up, in particular [5]:

(θ̂MLE − θ0)
d→ N(0, J−1(θ̂MLE)) (19)

where J is the Fisher Information Matrix computed from all
samples, θ0 and θ̂MLE are the true value and the maximum
likelihood estimation of the parameter θ respectively. The
Fisher information at the MLE is used to estimate its true
(but unknown) value [16].

Following the asymptotic normality of the maximum likeli-
hood estimator [9], the error of the corresponding estimation
on θ follows a normal distribution with zero mean and the co-
variance matrix given by the CRLB we derived in the previous
subsection. The variance of estimation error on parameter ai is
denoted as var(âMLE

i ). For a problem with sufficient M and
N (i.e., under asymptotic condition), (t̂MLE

i − t0i ) also follows
a norm distribution with 0 mean and variance given by:

var(t̂MLE
i ) =

(
di
si

)2

var(âMLE
i ) (20)

Thus, the confidence interval that can be used to quantify
the source reliability (i.e., ti) is given by the following:

(t̂MLE
i − cp

√
var(t̂MLE

i ), t̂MLE
i + cp

√
var(t̂MLE

i )) (21)

where cp is the standard score (z-score) of the confidence level
p. For example, for the 95% confidence level, cp = 1.96.

VI. EVALUATION

In this section, we evaluate the performance of our new
reliable social sensing schemes that incorporate “opportunity
to observe” constraints on sources (OtO EM) and constraints
on observed variables (DV EM), as well as the comprehensive
scheme (OtO+DV EM) that combines both. We compare their
performance to the state of the art scheme from previous
work [57] (Regular EM) through both a real world social
sensing application and extensive simulation studies. We also
evaluated the performance of the analytic bounds derived in
the previous section.

A. Real World Evaluation
The purpose of the application is to map locations of

traffic lights and stop signs on campus of the University of
Illinois (in the city of Urbana-Champaign). We use the dataset
from a smartphone-based vehicular sensing testbed, called
SmartRoad [18], where vehicle-resident Android smartphones
record their GPS location traces as the cars are driven around
by participants. The GPS readings include samples of the
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instantaneous latitude- longitude location, speed and bearing
of the vehicle, with a sampling rate of 1 second. We aim to
show that even very unreliable sensing of traffic lights and
stop signs can result in a good final map once our algorithm is
applied to these sensing observations to determine their odds of
correctness. Hence, an intentionally simple-minded application
scenario was designed to identify stop signs and traffic lights
from GPS data.

Specifically, in our experiment, if a vehicle waits at a
location for 15-90 seconds, the application concludes that it is
stopped at a traffic light and issues a traffic-light observation
(i.e., an observation that a traffic light is present at that location
and bearing). Similarly if it waits for 2-10 seconds, it concludes
that it is at a stop sign and issues a stop-sign observation (i.e.,
an observation that a stop sign is present at that location and
bearing). If the vehicle stops for less than 2 seconds, for 10-15
seconds, or for more than 90 seconds, no observation is made.
Observations were reported by each participant to a central
data collection point.

Clearly the observations defined above are very error-prone
due to the simple-minded nature of the “sensor” and the com-
plexity of road conditions and driver’s behaviors. Moreover,
it is hard to quantify the reliability of sources without a
training phase that compares measurements to ground truth.
For example, a car can stop elsewhere on the road due to a
traffic jam or crossing pedestrians, not necessarily at locations
of traffic lights and stop signs. Also, a car does not stop at
traffic lights that are green and a careless driver may pass
stop signs without stopping. The question addressed in the
evaluation is whether knowledge of constraints, as described
in this paper, helps improve the accuracy of stop sign and
traffic light estimation from such unreliable measurements in
this case study.

Hence, we applied the different estimation approaches devel-
oped in this paper along with the constraints from the physical
world on the noisy data to identify the correct locations of
traffic lights and stop signs and compute the reliability of
sources. One should note that location granularity here is of the
order of half a city block. This ensures that stop sign and traffic
light observations are attributed to the correct intersections.
Most GPS devices easily attain such granularity. Therefore, we
do not expect location errors to be of concern. For evaluation
purposes, we manually collected the ground truth locations of
traffic lights and stop signs.

In the experiment, 34 people (sources) were invited to
participate and 1,048,572 GPS readings (around 300 hours of
driving) were collected. A total of 4865 observations were
generated by the phones, of which 3303 were for stop signs
and 1562 were for traffic lights, collectively identifying 369
distinct locations. The elements SiCj of the observation matrix
were set according to the reported observations extracted from
each source vehicle.

We observed that traffic lights at an intersection are always
present in all directions. Hence, when processing traffic light
observations, we ignored vehicle bearing. However, stop signs
at an intersection have a few possible scenarios. For example,
(i) a stop sign may be present in each possible direction (e.g.,
All-Way stop); (ii) two stop signs may exist on one road

whereas no stop sign exist on the other road (e.g., a main
road intersecting with a small road); or (iii) two stop signs
may exist for one road and one stop sign for the other road
(e.g., a two-way road intersecting with a one way road). Hence,
in observations regarding stop signs the bearing is important.
We bin bearing into four main directions. A different Boolean
variable is created for each direction.

1) Opportunity to Observe: In this subsection, we first
evaluate the performance of the OtO EM scheme. For the OtO
EM scheme, we used the recorded GPS traces of each vehicle
to determine whether it actually went to a specific location or
not (i.e., decide whether a source has an opportunity to observe
a given variable or not). There are 54 actual traffic lights and
190 stop signs covered by the data traces collected.

Fig. 1. Source Reliability Estimation of OtO EM in the Case of Traffic Lights

Figure 1 compares the source reliability estimated by both
the OtO EM and regular EM schemes to the actual source
reliability computed from ground truth. We observed that the
OtO EM scheme stays closer to the actual results for most
of the sources (i.e., OtO EM estimation error is smaller than
regular EM for about 74% of sources).

Fig. 2. Source Reliability Bounds of OtO EM in the Case of Traffic Lights

Figure 2 shows the 90% confidence bounds on the source
reliability estimation by the OtO EM as we derived in Sec-
tion V. We observed the OtO EM scheme has only one outlier
out of 34 sources, which matches well with the definition of
the confidence bounds defined at this confidence level.

Next, we explore the accuracy of identifying traffic lights
by the new scheme. We plotted the true positives and false
positives of the OtO EM scheme and the Regular EM scheme
for the locations they identified as traffic lights. The results
are shown in Figure 3. We observed the OtO EM scheme
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Fig. 3. True and False Positives of OtO EM vs Regular EM in the Case of
Traffic Lights

outperforms the Regular EM by finding more true positives
at the same false positives. In particular, the OtO EM scheme
is able to find five more traffic light locations compared to the
regular EM scheme. The detailed comparison results between
two schemes are given in Table I.

Regular EM OtO EM
Average Source Reliability
Estimation Error

10.19% 7.74%

Number of Correctly Iden-
tified Traffic Lights

31 36

Number of Mis-Identified
Traffic Lights

2 3

TABLE I. PERFORMANCE COMPARISON BETWEEN REGULAR EM VS
OTO EM IN CASE OF TRAFFIC LIGHTS

We repeated the above experiments for stop sign identi-
fication and observed that the OtO EM scheme achieves a
more significant performance gain in both source reliability
estimation and stop sign classification accuracy compared to
the regular EM scheme. The reason is: stop signs are scattered
in town and the odds that a vehicle’s path covers most of the
stop signs are usually small. Hence, having the knowledge of
whether a source had an opportunity to observe a variable
is very helpful. However, we do find in general that the
identification of stop signs is more challenging than that of
traffic lights. There are several reasons for that. Namely, (i) the
observations for stop signs are sparser because stops signs are
typically located on smaller streets, so the chances of different
cars visiting the same stop sign are lower than that for traffic
lights, (ii) cars often stop briefly at non-stop sign locations,
which our sensors mis-interpret for stop signs, and (iii) when
cars want to make a turn after the stop sign, cars’ bearings
are often not well aligned with the directions of stop signs,
which causes errors since stop-sign observations are bearing-
sensitive.

Figure 4 compares source reliability computed by the OtO
EM and regular EM schemes. The actual reliability is com-
puted from experiment data similarly as we did for traffic
lights. We observe that source reliability is better estimated
by the OtO EM scheme compared to the regular EM scheme.

Figure 5 shows the 90% confidence bounds on the source
reliability estimation by the OtO EM in the case of stop signs.
We observed that the OtO EM scheme has only one outlier

out of 34 sources. This again verifies the correctness of the
confidence bounds we derived earlier.

Figure 6 show the true positives and false postives in
recognizing stop signs. We observe the OtO EM scheme
outperforms the Regular EM scheme. In particular, the OtO
EM finds twelve more correct stop sign locations and reduces
one false positive location compared to the regular EM scheme.
The detailed comparison results are given in Table II. To
further investigate the effects of data sparsity on different
schemes, we repeat the above experiments using only 75%
of the observations we collected. Results are also reported in
Table II.

2) Dependent Variables: In this subsection, we evaluated
our extensions that consider constraints on observed variables
(DV EM), and the comprehensive OtO+DV EM scheme. While
the earlier discussion treated stop signs as independent vari-
ables, this is not strictly so. The existence of stop signs in dif-

Fig. 4. Source Reliability Estimation of OtO EM in the Case of Stop Signs

Fig. 5. Source Reliability Bounds of OtO EM in the Case of Stop Signs

Fig. 6. True and False Positives of OtO EM vs Regular EM in the Case of
Stop Signs
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Regular EM OtO EM DV EM DV+OtO EM
Average Source Reliability Estimation Error
(Full Dataset)

25.34% 16.75% 15.99% 11.98%

Number of Correctly Identified Stop Signs
(Full Dataset)

127 139 141 146

Number of Mis-Identified Stop Signs
(Full Dataset)

25 24 29 25

Average Source Reliability Estimation Error
(75% Dataset)

36.44% 18.2% 18.0% 15.29%

Number of Correctly Identified Stop Signs
(75% Dataset)

92 101 111 116

Number of Mis-Identified Stop Signs
(75% Dataset)

18 23 30 29

TABLE II. PERFORMANCE COMPARISON OF REGULAR EM, OTO EM, DV EM AND DV+OTO EM IN CASE OF STOP SIGNS

ferent directions (bearings) is in fact quite correlated. We em-
pirically computed those correlations for Urbana-Champaign
and assumed that we knew them in advance. Clearly, the more
“high-order” correlations are considered, the more information
is given to improve performance of algorithm. To assess the
effect of “minimal” information (which would be a “worst-
case” improvement for our scheme), in this paper we consider
pairwise correlations only. Hence, the joint distribution of
co-existence of (two) stop signs in opposite directions at an
intersection was computed. It is presented in Table III, and
was used as input to the DV EM scheme.

A = stop sign 1 exists; B =
stop sign 2 exists

Percentage

p(A,B) 36%
p(not A, not B) 49%
p(A,not B) = p(not A, B) 7.5%

TABLE III. DISTRIBUTION OF STOP SIGNS IN OPPOSITE DIRECTIONS

Fig. 7. Source Reliability Estimation of DV and DV+OtO EM in the Case
of Stop Signs

Figure 7 shows the accuracy of source reliability estimation,
when these constraints are used. We observe that both DV EM
and DV+OtO EM scheme track the source reliability very well
(the estimation error of the two EM schemes improved 9.4%
and 13.4% repsectively compared to the regular EM scheme).

Figure 8 and Figure 9 show the 90% confidence bounds on
the source reliability estimation by the DV EM and DV+OtO
EM respectively. We observed the DV EM scheme has two

Fig. 8. Source Reliability Bounds of DV EM in the Case of Stop Signs

Fig. 9. Source Reliability Bounds of DV+OtO EM in the Case of Stop Signs

outliers out of 34 sources while DV+OtO EM scheme has
no outlier. These results are encouraging. They verified the
correctness of the confidence bounds we derived to quantify
the accuracy of the source reliability estimation by the new
EM schemes developed in this paper.

The true positives and false positives of DV and DV+OtO
EM for stop signs are shown in Figure 10. Observe that the DV
EM scheme finds 14 more correct stop sign locations than the
Regular EM scheme. The DV+OtO EM scheme performed the
best, it finds the most stop sign locations (i.e., 19 more than
regular EM, 5 more than DV EM) while keeping the false
positives the least (i.e., the same as regular EM and 4 less
than DV EM). The detailed results are given in Table II.
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Fig. 10. ROC Curves of OtO, DV, OtO+DV EM vs Regular EM in the Case
of Stop Signs

B. Simulation Study
In this section, we continued our evaluation of the new

schemes developed in this paper through extensive simulation
studies to explore different problem dimensions. To that end,
we built a simulator in Matlab 7.14.0 that generates a random
number of sources and binary variables2. A random probability
ti is assigned to each source Si representing his/her reliability
(i.e., the ground truth probability that they report correct ob-
servations). For each source Si, Li observations are generated.
Each observation has a probability ti of being true (i.e., report-
ing a the value of a variable as true correctly) and a probability
1− ti of being false (reporting the value of a variable as true
when it is not). We let ti be uniformly distributed between 0.5
and 1 in our experiments3. For initialization, the initial values
of source reliability (i.e., ti) in the evaluated schemes are set
to the mean value of its definition range.

We compared the new schemes presented in this paper
(i.e., OtO EM, DV EM, OtO+DV EM) with the Regular EM
scheme, which was reported to beat four other state-of-the-
art baselines [57]. To evaluate the performance of different
schemes, we studied three metrics: (i) estimation error of
source reliability; (ii) the fraction of misclassified variables;
(iii) the correctness of the derived confidence bounds.

1) OtO EM Performance Study: In the first set of experi-
ments, we studied the performance of the OtO EM scheme.
In the experiment, the number of reported variables was fixed
at 2000, of which 1000 variable were of true values and 1000
were of false values. The average number of observations per
source was set to 100. The number of sources was varied
from 30 to 120. For this set of experiments, we assumed
variables are all independent. Reported results are averaged
over 100 random source reliability distributions. We compare
the OtO EM with Regular EM under four scenarios where the
fraction of observable variables is different. The fraction of
observable variables is defined as the fraction of variables that
a source has opportunity to observe. We also add an additional
baseline as OtO EM+50% Uncertainty. This baseline is the
same as the OtO EM scheme only except the sources now
have 50% probability to mis-identify the variables they do

2As stated in our application model, sources never report a variable to be
false (e.g., cars never reported the absence of traffic lights)

3In principle, there is no incentive for a source to lie more than 50% of the
time, since negating their statements would then give a more accurate truth

not have an opportunity to observe as observable. Results are
shown in Figure 11 to Figure 13. Figure 11 shows the results
of the source reliability estimation error. We observed that the
OtO EM consistently performed the best in all four scenarios.
Also note that the performance gain achieved by OtO EM
is larger when the fraction of observable variables is lower,
which is intuitive. Figure 12 shows the results of variable
classification accuracy. We observed that the OtO EM classifies
more variables correctly compared to the Regular EM and OtO
EM+50% Uncertainty by having a more accurate knowledge
of “opportunity to observe” of sources. Figure 13 shows the
fraction of sources whose reliability is correctly bounded
by the 90% confidence bounds computed in Section V. We
observed that the source reliability of the OtO EM scheme is
correctly bounded by the corresponding confidence bounds in
all scenarios while the bounds for the Regular EM failed to
be accurate when the fraction of observable variables is low.

Additionally, we also studied the performance trade-off
between estimation variance and bias for the OtO EM scheme.
We found the estimation bias is more significant when the
number of sources in the system is small and showed in
our previous work that the actual CRLBs track the estima-
tion variance better than the asymptotic bounds under such
conditions [58]. Hence we computed the actual CRLB and
estimation variance for both OtO EM and Regular EM for a
small number of sources. The experiment setup is the same as
before. We now varied the number of sources from 5 to 20.
The fraction of observable variables is set to 0.5. The results
are averaged over 50 experiments and shown in Figure 14.
We observe that the OtO EM has a larger CRLB and much
smaller estimation bias compared to the regular EM scheme.
The results demonstrate that the lower CRLB for regular EM
does not translate to better estimation performance due to the
bias. We also observe that there is some bias for OtO EM
scheme when the number of sources is very small. This is
because: (i) the MLE is biased on those points due to the
small dataset; (ii) the number of variables made per source
is not large enough to completely reflect the source reliability
accuracy resolution.

2) DV EM Performance Study: In the second set of experi-
ments, we studied the performance of the DV EM scheme. The
experiment setup is similar as the first one. The differences
are (i) we assume sources have opportunity to observe all
variables; (ii) variables are divided into independent groups
and variables within each independent groups are dependent.
For simplicity, we assumed all groups are of the same size and
the variables within each group are fully correlated (i.e., the
probabilities of correlated variables to have the same value are
equal and add up to 1). Reported results are averaged over 100
random source reliability distributions. We compare the DV
EM with Regular EM under four scenarios where the fraction
of dependent variables is different. The fraction of dependent
variables is the fraction of variables that belong to independent
group with more than one variable. In each scenario, we also
vary the number of variables in each independent group (i.e.,
independent group size). Results are shown in Figure 15 to
Figure 17. Figure 15 shows the results of the source reliability
estimation error. We observed that the DV EM performed
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Fig. 11. Source Reliability Estimation Error of OtO EM vs Regular EM
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Fig. 12. Fraction of Misclassified Variables of OtO EM vs Regular EM
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Fig. 13. Fraction of Correctly Bounded Sources of OtO EM vs Regular EM

(a) CRLB and Bias on ai (b) CRLB and Bias on bi

Fig. 14. Tradeoff between Estimation Variance and Bias of OtO vs Regular EM

better than the Regular EM in all four scenarios. Also note
that the performance gain of DV EM is larger when the inde-
pendent group size is larger. This is because more correlations
between variables can help the DV EM scheme to better
infer correctness of all dependent variables. Figure 16 shows
the results of variable classification accuracy. We observed
that the DV EM classifies more variables correctly compared
to the Regular EM by appropriately handling the constraint

between variables. Figure 17 shows the fraction of sources
whose reliability is correctly bounded by the 90% confidence
bounds. We observed that the source reliability of the DV EM
scheme is correctly bounded by the corresponding confidence
bounds in all scenarios while the bounds for the Regular EM
failed to be accurate when the number of sources in the system
is small.

Additionally, we also studied the convergence performance
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Fig. 15. Source Reliability Estimation Error of DV EM vs Regular EM
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Fig. 16. Fraction of Misclassified Variables of DV EM vs Regular EM
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(b) Fraction of Dependent Variables =
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(d) Fraction of Dependent Variables =
0.2

Fig. 17. Fraction of Correctly Bounded Sources of DV EM vs Regular EM

(a) CRLB on ai (b) CRLB on bi

Fig. 18. Convergence of Actual CRLB of DV vs Regular EM

of the DV EM scheme. We derived the actual CRLBs for
the regular EM scheme in [58]. We found it is non-trivial
to derive the actual CRLBs for the DV EM under arbitrary
variable constraints and decided to leave such derivations for a
follow-up work. However, it is possible to compute the actual
CRLB of DV EM for the special case where the variables
in each independent group are fully correlated. Therefore, we

compared the actual CRLBs of DV EM and Regular EM
scheme (under the condition of fully correlated variables in
each group) with the asymptotic bounds we derived earlier.
The experiment setup is the same as before. The fraction of
dependent variables is set to 1 and the size of independent
group is set to 2. We varied the number of sources from 5 to
20. The results are averaged over 50 experiments and shown
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in Figure 18. We observe that the DV EM has smaller CRLBs
(for both ai and bi) and converges faster to the asymptotic
bounds compared to the Regular EM scheme.

3) OtO+DV EM Performance Study: In the third set of
experiments, we studied the performance of the OtO+DV EM
scheme in comparison with OtO EM, DV EM and Regular EM
scheme. The experiment setup is the same as before. However,
we assumed in this set of experiments: (i) sources have
opportunity to observe only a fraction of all variables; (ii) a
fraction of variables are dependent and the remaining ones are
independent. Reported results are averaged over 100 random
source reliability distributions. Results are shown in Figure 19
to Figure 21. Figure 19 shows the results of different schemes
by varying the number of sources in the system. In this
experiment, we set both the fraction of observable variables
and the fraction of dependent variables to be 0.8. The number
of sources was varied from 30 to 120. We observed that the
OtO+DV EM performed the best compared to other baselines
in all evaluation metrics. Also note that the performance of
all schemes improves as the number of sources increases.
Figure 20 shows the results of different schemes by varying the
fraction of observable variables. The number of sources was
set to 30 and the fraction of dependent variables was set to 0.8.
We varied the fraction of observable variables from 0.1 to 1.
We observed that the OtO+DV EM continues to have the best
performance among all schemes under comparison. We also
noted the performance of the schemes that ignore “opportunity
to observe” (i.e., DV EM and Regular EM) becomes worse as
the fraction of observable variables in the system decreases.
Figure 21 shows the results of different schemes by varying
the fraction of dependent variables. The number of sources
was kept the same as the previous experiment and the fraction
of observable variables was set to 0.8. We varied the fraction
of dependent variables from 0.1 to 1. We observed that the
OtO+DV EM is still the best performed scheme compared to
other baselines. Also note that the performance of the schemes
that take variable constraint into account (i.e., OtO+DV EM
and DV EM) improves as the fraction of dependent variables
in the system increases.

VII. DISCUSSION AND LIMITATIONS

Motivated by the need to address data reliability challenges
in emerging cyber-physical systems (with humans-in-the-loop),
this paper presented a maximum likelihood estimation frame-
work for exploiting the physical world constraints (i.e., source
locations and observed variable constraints) to improve the
reliability of social sensing. Some limitations exist that offer
directions for future work.

First, we do not explicitly address uncertainties in reported
locations and the observed variables in our model are assumed
to be time invariant. This is mainly because our current
application involves the detection of fixed infrastructure (e.g.,
locations of stop signs and traffic lights where the localization
accuracy of the GPS is sufficient). Time is also less relevant in
such context. Hence, the source constraint is only a function
of source location, and observed variable constraints are not
likely to change over time. In systems where the state of the

environment may change over time, when we consider the
source constraints, it is not enough for the source to have
visited a location of interest. It is also important that the source
visits that location within a certain time bound during which
the state of the environment has not changed. Similarly, when
we consider observed variable constraints, it is crucial that
constraints of observed variables remain stable within a given
time interval and we have an efficient way to quickly update
our estimation on such constraints as time goes by. More
recently, we have developed an extended MLE framework to
explicitly handle time variant variables in our model [59].
The intuition of the new approach is that we could model the
correlations between different states of a time variant variable
in a similar way as we model observed variable constraints,
which is discussed in this paper. In these applications, the
localization error is not an issue, but in general such errors
can be problematic, e.g., when collecting information from
social media such as Twitter. Future work needs to consider
such errors in the more general setting.

Second, we assume sources will only report observations for
the places they have been to (e.g., cars only generate stop sign
observations on the streets their GPS traces covered). Hence,
it makes sense to “penalize” sources for not making obser-
vations for some clearly observable variables based on their
locations. However, many other factors might also influence
the opportunity of users to generate observations in real-world
social sensing applications. Some of these factors are out of
user’s control. For example, in some geo-tagging applications,
participants use their phones to take photos of locations of
interest. However, this approach might not work at some places
due to “photo prohibited” signs or privacy concerns. Source
reliability penalization based on visited locations might not
be appropriate in such context. It is interesting to extend the
notion of location-based opportunity-to-observe in our model
to consider different types of source constrains in other social
sensing applications.

Third, we do not assume “Byzantine” sources in our model
(e.g., cars will not cheat in reporting the their GPS coordi-
nates). However, in some crowd-sensing applications, sources
can intentionally report incorrect locations (e.g., Google’
Ingress). Different techniques have been developed to detect
and address location cheating attacks on both mobile sens-
ing applications [15] and social gaming systems [29]. These
techniques can be used along with our schemes to solve the
truth estimation problem in social sensing applications where
source’s reliability is closely related to their locations. More-
over, it is also interesting to further investigate the robustness
of our scheme with respect to the percentage of cheating
sources in the system.

Finally, we assume that the joint probability distribution
of dependent variables is known or can be estimated from
prior knowledge. This might not be possible for all social
sensing applications. Clearly, the approach in the current
paper would not apply if nothing was known about spatial
correlations in environmental state. Additionally, the scale of
current experiment is relatively small. We are working on new
social sensing applications, where we can test our models at a
larger scale.
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Fig. 19. OTO+DV EM, OTO EM, DV EM, and Regular EM vs Varying the Number of Sources
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Fig. 20. OTO+DV EM, OTO EM, DV EM, and Regular EM vs Varying the Fraction of Observable Variables
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Fig. 21. OTO+DV EM, OTO EM, DV EM, and Regular EM vs Varying the Fraction of Dependent Variables

VIII. RELATED WORK

This work broadly falls into the area of addressing correct-
ness challenges in cyber-physical systems. Significant prior
advances were made in addressing timing correctness and
functional correctness of cyber-physical systems [3], [7], [8],
[26], [27], [30], [35], [36], [43], [49], [50]. In real time
community, a large number of literature centered around devel-
oping various scheduling policies and deriving corresponding
utilization bounds to address timing correctness. A good survey
of real-time scheduling policies can be found in [47]. Liu and
Layland presented the first utilization bound for periodic tasks
on a single processor [27]. This work is followed by a plethora
of work to improve the Liu & Layland bound in different
dimensions such as run-time extension [36], fault-tolerance
extension [35], multi-frame periodic model extension [30].
Several algorithms have also been developed to derive the

utilization bounds for aperiodic tasks [26], [49], [50]. The
functional correctness in CPS mainly refers to correctness
of program logic and system modeling [42], [48]. Useful
results and tools have been recently developed for software
verification and program analysis in cyber-physical and hybrid
systems [7], [8]. Formalism based methods have also been
developed to study the modeling correctness of CPS [3],
[43]. In contrast, this paper investigates data correctness
challenges, which is motivated by cyber-physical applications
with humans-in-the-loop; specifically the rise of applications
that exploit social sensing.

Human-in-the-loop cyber-physical systems (HiLCPSs) in-
corporate a challenging and promising class of CPS appli-
cations that augment and facilitate human interaction with
the physical world [45]. Some examples of these applications
include energy management [28], health care [22], automobile
systems [12], and disaster response [52]. Many interesting
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research challenges have been studied in HiLCPSs applica-
tions [33]. For example, Wolpaw et al. developed a non-
invasive brain computer interface (BCI) to efficiently measure
electric potential on the scalp for the infererence of human’s
intent [60]. Lu et al. designed a smart thermostat system by
leavening hidden markov model to model occupancy and sleep
pattern of the residents in a home for energy savings [28]. The
work in this paper is complementary to the work mentioned
above. We focused on addressing the data reliability problems
in HiLCPSs where humans play the role of sensors or sensor
carriers and where the reliability of data sources and the
collected data is in general unknown a priori.

Social sensing is made possible by the great increase in the
number of mobile sensors owned by individuals (e.g., smart
phones), the proliferation of Internet connectivity, and the fast
growth in mass dissemination media (e.g., Twitter, Facebook,
and Flickr, to name a few). In social sensing applications,
humans play a key role in data collection by acting as sensor
carriers [25] (e.g., opportunistic sensing), sensor operators [4]
(e.g., participatory sensing) or sensor themselves. An early
overview of social sensing applications is described in [1].
Examples of early systems include CenWits [19], CarTel [20],
BikeNet [11], and CabSense [46]. Recent work explored
privacy [38], energy-efficient context sensing [34], and social
interaction aspects [41].

There exists a good amount of work in the data mining and
machine learning communities on the topic of fact-finding,
which addresses the challenge of ascertaining correctness of
data from unreliable sources [23], [37], [63]. More recent work
on fact-finding came up with new algorithms by leveraging
techniques in statistics and estimation theory [53], [55], [57],
[58], [64]. Zhao et al. [64] presented Bayesian network model
to handle different types of errors made by sources and merge
multi-valued attribute types of entities in data integration
systems. Wang et al. [57] proposed a Maximum Likelihood
Estimation (MLE) framework that offers a joint estimation
on source reliability and variable classification based on a set
of general simplifying assumptions. In their following work,
Wang et al. further extended their framework to handle stream-
ing data [53] and source dependency [55]. The approach was
compared to several state-of-the-art previous fact-finders and
was shown to outperform them in estimation accuracy [57].
Accordingly, we only compare our new extensions to the
winning approach from prior art. The accuracy of the MLE
approach has been quantified in [58]. However, the derivation
of such accuracy bounds are based on the assumptions that
sources have opportunities to observe the underlying events
of all variables and variables are independent. In contrast,
we derived new accuracy bounds in this paper that relaxed the
above two assumptions. In other words, our bounds accommo-
dated a source’s opportunity to observe a subset of variables
and constraint between different variables.

Finally, physical correlations and models (both spatial and
temporal) have been extensively studied in the wireless sensor
network (WSN) community. They have often been used to
reduce resource consumption by leveraging knowledge of the
physical model or dependency to reduce data transmission
needs. Compression and coding schemes were proposed to

reduce the data redundancy in the space domain [44], [62].
Temporal correlations were exploited to reduce network load
while offering compression quality guarantees [2], [13]. The
novelty of our work lies in incorporating the constraints from
the physical world into a framework for improving estimation
accuracy as opposed to reducing resource cost. The under-
lying insight is the same: knowledge of physical constraints
between variables reduces problem dimensionality. Prior WSN
work harvests such reduction to correspondingly reduce data
transmission needs. In contrast, we harvest it to improve noise
elimination at the same resource cost.

IX. CONCLUSION

This paper presented a framework and new analytic bounds
for incorporating source and observed variable constraints
that arise from physical knowledge (of source locations and
observed variable correlations) into maximum-likelihood anal-
ysis to improve the accuracy of social sensing in cyber-
physical applications with humans-in-the-loop. The problem
addressed was one of jointly assessing the values of observed
variables and the reliability of their sources by exploiting
physical constraints and data provenance relations to better
estimate the likelihood of reported observations. An expec-
tation maximization scheme was described that arrives at a
maximum likelihood solution. The performance of the new
algorithm and analytic bounds was evaluated through both a
real world social sensing application and extensive simulation
studies. Results show a significant reduction in estimation error
of both source reliability and variable classification as well
as the correctness of derived analytic bounds thanks to the
exploitation of physical constraints.

X. APPENDIX

A. Derivation of the E-step and M-step of OtO EM

Having formulated the new likelihood function to account
for the source constraints in the previous subsection, we can
now plug it into the Q function defined in Equation (7)
of Expectation Maximization. The E-step can be derived as
follows:

Q
(
θ|θ(n)

)
= EZ|X,θ(n) [logL(θ;X,Z)]

=
N∑

j=1

{
p(zj = 1|Xj, θ

(n))×
∑

i∈Sj

(logαi,j + log dj)

+ p(zj = 0|Xj, θ
(n))×

∑

i∈Sj

(logαi,j + log(1 − dj))

}
(22)

where p(zj = 1|Xj, θ(n)) represents the conditional probabil-
ity of the variable Cj to be true given the observation matrix
related to the jth observed variable and current estimate of θ.
We represent p(zj = 1|Xj, θ(n)) by Z(n, j) since it is only a
function of t and j. Z(n, j) can be further computed as:
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Z(n, j) = p(zj = 1|Xj, θ
(n))

=
p(zj = 1;Xj, θ(n))

p(Xj , θ(n))

=
p(Xj, θ(n)|zj = 1)p(zj = 1)

p(Xj, θ(n)|zj = 1)p(zj = 1) + p(Xj , θ(n)|zj = 0)p(zj = 0)

=

∏
i∈Sj

αi,j × d(n)j
∏

i∈Sj
αi,j × d(n)j +

∏
i∈Sj

αi,j × (1− d(n)j )
(23)

Note that, in the E-step, we continue to only consider sources
who observe a given variable while computing the likelihood
of reports regarding that variable.

In the M-step, we set the derivatives ∂Q
∂ai

= 0,
∂Q
∂bi

= 0, ∂Q
∂dj

= 0. This gives us the θ∗ (i.e.,
a∗1, a

∗
2, ...a

∗
M ;b∗1, b∗2, ...b∗M ;d∗1, d∗2, ..., d∗N ) that maximizes the

Q
(
θ|θ(n)

)
function in each iteration and is used as the θ(n+1)

of the next iteration.

a(n+1)
i = a∗i =

∑
j∈SJi

Z(n, j)
∑

j∈Ci
Z(n, j)

b(n+1)
i = b∗i =

∑
j∈SJi

(1 − Z(n, j))
∑

j∈Ci
(1− Z(n, j))

dt+1
j = d∗j = Z(n, j)

d∗i =

∑
j∈Ci

Z(n, j)

|Oi|
(24)

where Oi is set of variables source Si observes according to the
knowledge matrix SK and Z(n, j) is defined in Equation (23).
SJi is the set of variables the source Si actually reports in the
observation matrix SC. We note that, in the computation of
ai and bi, the silence of source Si regarding some variable Cj

is interpreted differently depending on whether Si observed it
or not. This reflects that the opportunity to observe has been
incorporated into the M-Step when the estimation parameters
of sources are computed. The resulting OtO EM algorithm is
summarized in the subsection below.

B. Derivation of E-Step and M-Step of DV and OtO+DV EM
Given the new likelihood function of the DV EM scheme

defined in Equation (11), the E-step becomes:

Q
(
θ|θ(n)

)
= EZ|X,θ(n) [logL(θ;X,Z)]

=
∑

g∈G

p(zg1 , ..., zgk |Xg, θ
(n))

×
{

∑

i∈M

∑

j∈cg

logαi,j + log p(zg1 , ..., zgk)

}
(25)

where p(zg1 , ..., zgk |Xg, θ(n)) represents the conditional
joint probability of all variables in independent group g
(i.e., g1, ..., gk) given the observed data regarding these

variables and the current estimation of the parameters.
p(zg1 , ..., zgk |Xg, θ(n)) can be further computed as follows:

p(zg1 , ..., zgk |Xg, θ
(n))

=
p(zg1 , ..., zgk ;Xg, θ(n))

p(Xg, θ(n))

=
p(Xg, θ(n)|zg1 , ..., zgk)p(zg1 , ..., zgk)∑

g1,...,gk∈Yg
p(Xg, θ(n)|zg1 , ..., zgk)p(zg1 , ..., zgk)

=

∏
i∈M

∏
j∈cg

αi,jp(zg1 , ..., zgk)∑
g1,...,gk∈Yg

∏
i∈M

∏
j∈cg

αi,jp(zg1 , ..., zgk)
(26)

We note that p(zj = 1|Xj, θ(n)) (i.e., Z(n, j)), defined as
the probability that Cj is true given the observed data and
the current estimation parameters, can be computed as the
marginal distribution of the joint probability of all variables in
the independent variable group g that variable Cj belongs to
(i.e., p(zg1 , ..., zgk |Xg, θ(n)) j ∈ cg). We also note that, for
the worst case where N variables fall into one independent
group, the computational load to compute this marginal grows
exponentially with respect to N . However, as long as the
constraints on observed variables are localized, our approach
stays scalable, independently of the total number of estimated
variables.

In the M-step, as before, we choose θ∗ that maximizes the
Q
(
θ|θ(n)

)
function in each iteration to be the θ(n+1) of the

next iteration. Hence:

a(n+1)
i = a∗i =

∑
j∈SJi

Z(n, j)
∑N

j=1 Z(n, j)

b(n+1)
i = b∗i =

∑
j∈SJi

(1− Z(n, j))
∑N

j=1(1− Z(n, j))

dt+1
j = d∗j = Z(n, j) (27)

where Z(n, j) = p(zj = 1|Xj, θ(n)). We note that for
the estimation parameters, ai and bi, we obtain the same
expression as for the case of independent variables. The reason
is that sources report variables independently of the form of
constraints between these variables.

Next, we combine the two EM extensions (i.e., OtO EM and
DV EM) derived so far to obtain a comprehensive EM scheme
(OtO+DV EM) that considers constraints on both sources and
observed variables. The corresponding E-Step and M-Step are
shown below:

p(zg1 , ..., zgk |Xg, θ
(n)) =

p(zg1 , ..., zgk ;Xg, θ(n))

p(Xg, θ(n))

=
p(Xg, θ(n)|zg1 , ..., zgk)p(zg1 , ..., zgk)∑

g1,...,gk∈Yg
p(Xg, θ(n)|zg1 , ..., zgk)p(zg1 , ..., zgk)

=

∏
i∈Sj

∏
j∈cg

αi,jp(zg1 , ..., zgk)∑
g1,...,gk∈Yg

∏
i∈Sj

∏
j∈cg

αi,jp(zg1 , ..., zgk)

where Sj : Set of sources observes Cj (28)
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a(n+1)
i = a∗i =

∑
j∈SJi

Z(n, j)
∑

j∈Ci
Z(n, j)

b(n+1)
i = b∗i =

∑
j∈SJi

(1− Z(n, j))
∑

j∈Ci
1− Z(n, j))

dt+1
j = d∗j = Z(n, j)

where Ci is set of variables source Si observes (29)
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