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Abstract

This paper develops a principled approach to accurately identify interesting

places in a city through social sensing applications. Social sensing has emerged

as a new application paradigm, where a crowd of social sources (humans or

devices on their behalf) collectively contribute a large amount of observations

about the physical world. This paper studies an interesting place finding prob-

lem, in which the goal is to correctly identify the interesting places in a city.

Important challenges exist in solving this problem: (i) the interestingness of a

place is not only related to the number of users who visit it, but also depends

upon the travel experience of the visiting users; (ii) the user’s social connections

could directly affect their visiting behavior and the interestingness judgment

of a given place. In this paper, we develop a new Social-aware Interesting

Place Finding Plus (SIPF+) approach that addresses the above challenges by

explicitly incorporating both the user’s travel experience and social relationship

into a rigorous analytical framework. The SIPF+ scheme can find interesting

places not typically identified by traditional travel websites (e.g., TripAdvisor,

Expedia). We compare our solution with state-of-the-art baselines using two

real-world datasets collected from location-based social network services and

verified the effectiveness of our approach.
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Preprint submitted to Elsevier January 27, 2017



1. Introduction

This paper develops a principled approach to accurately identify interesting

places in a city through social sensing applications. This work is motivated

by the emergence of social sensing as a new application paradigm of collecting

observations about the physical world from social sources (humans or devices

on their behalf) [1]. This paradigm is enabled by a few recent technical trends:

(i) the proliferation of smart devices (e.g., smartphones) owned by average indi-

viduals; (ii) the ubiquitous coverage of wireless communication (e.g., 4G, WiFi,

WiMax); (iii) the advent of online social media (e.g., Twitter, Foursquare, Face-

book). For example, common citizens can now easily use a Location-Based So-

cial Network (LBSN) service (e.g., Foursquare) on their mobile phones to upload

the “check-in” points of the places they visit in a city. Alternatively, a group of

drivers may use a smartphone app to report traffic conditions (e.g., congestion,

accidents, etc.) they experience in a given area. In this paper, we focus on

an interesting place finding problem, where the goal is to correctly identify the

interesting places in a city where people may have strong interest in visiting

(e.g., parks, museums, historic sites, scenic trails, etc.). The results of this work

can be used to develop future travel recommendation systems, mobile guidance

applications, and user travel experience sharing applications that explore the

power of social sensing data contributed by common citizens [2, 3]. For exam-

ple, the results can help people find more interesting places in a city, design a

better route for their travels, and share their travel experience with other users

in a timely fashion.

Previous studies have adopted social sensing (in some cases referred to as

crowdsourcing) to solve the interesting place finding problem. The main idea

behind current solutions is to automatically infer the locations of interesting

places in a given region (e.g., a city) from the check-in points or GPS traces

that users share when using location-aware applications [4]. The advantages of

using crowdsourcing methods compared to the traditional methods (e.g., search

engine, travel websites) are threefold. First, the cost of data collection using
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crowdsorucing is low since the location data of users is already made available

through the location based services (e.g., LBSN) [5]. Second, the interestingness

of a place may change over time and the crowdsourcing methods can track

such changes by analyzing the most recent trajectory data uploaded by the

crowd [6]. Third, the crowdsourcing traces normally have a better spatial-

temporal coverage of the interesting places, as the crowd is naturally distributed

across the region [7]. Table 1 also shows some examples of interesting places

in the cities of Chicago and San Francisco that are either not recommended by

traditional travel websites (e.g., TripAdvisor, Expedia, and CityPass) or have

very low recommendation rankings on those websites. However, those places are

identified as very interesting places by many people who visited them in person

and shared their experience on social media (e.g., Twitter and Foursquare). In

this paper, we develop a new social sensing based scheme that is able to find such

interesting places that cannot easily be identified by traditional travel websites.

Chicago San Francisco

North Avenue Beach Conservatory of Flowers

Museum of Contemporary Art Japanese Tea Garden

Oriental Theatre Aquarium of the Bay

The Peggy Notebaert Nature Museum Yerba Buena Gardens

Music Box Theatre Mission Dolores Park

Table 1: Interesting Places that are Missed by Traditional Travel Websites

While previous studies in information retrieval [8, 7] , data mining [9, 4], and

social sensing [10, 11] have made significant efforts to address the interesting

place finding problem, two important limitations remain in current solutions.

First, the current techniques are mostly heuristic-based and make strong as-

sumptions when they handle users in the problem. For example, they either

assume all users have exactly the same travel experience 1 or the correlation be-

1The travel experience of a user is highly correlated with the user’s ability to find interesting

places in a city [12]
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tween a user’s travel experience and the number of places he/she visited is simply

linear [8]. However, these assumptions cannot be applied in real-world scenar-

ios where the relationship between a user’s travel experience and the number of

places he/she visited is nonlinear [13]. The interesting place finding problem

becomes more challenging when neither the user’s travel experience nor the in-

terestingness of a place is known a priori [14]. Hence, we need to develop a

new framework that can accurately model both the user’s travel experience and

the interestingness of places based on the social sensing data observed. Second,

the social connections between users could easily affect their visiting behavior

and the judgment on the interestingness of places they visited. For example,

a group of colleagues who work in the same company are more likely to visit

the same building every day; however, the building of their company may not

necessarily be interesting to the general public. Unfortunately, current inter-

esting place finding techniques completely ignore the impact of a user’s social

dependency, which can easily lead to suboptimal solutions, as we observed in

our experiments.

In this paper, we develop a Social-aware Interesting Place Finding (SIPF+)

scheme that addresses the above limitations by explicitly incorporating both

the user’s travel experience and social dependency into a Maximum Likelihood

Estimation (MLE) framework. In particular, a principled, unsupervised learn-

ing approach based on Expectation Maximization (EM) is developed to jointly

estimate both the user’s travel experience and the interestingness of a place

without prior knowledge on either. We evaluate SIPF+ using two real-world

datasets collected from location-based social network services. The evaluation

results show that our approach significantly outperforms the state-of-the-art

baselines by correctly identifying more interesting places in a city while mini-

mizing the number of false positives. The results of this paper are important

because they allow social sensing applications to accurately identify interesting

places by taking into account the user’s travel experience and social dependency

under a principled framework. To summarize, the contributions of this work are

as follows:
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• To the best of our knowledge, we are among the first to develop a princi-

pled, unsupervised learning framework that allows us to derive an optimal

solution (in the sense of maximum likelihood estimation) for the social-

aware interesting place finding problem.

• We explicitly consider both the user’s travel experience and social depen-

dency in the interesting place finding solution.

• Our MLE solution handles the nonlinear relationship between the user’s

travel experience and the interestingness of places.

• We perform extensive experiments on two real-world datasets, comparing

the performance of our scheme to that of the state-of-the-art baselines.

A preliminary version of this work has been published in [11]. We refer

to the previous version as SIPF. The current paper is a significant extension

of the previous work in the following aspects. First, we extend our previous

model in [11] by addressing more complex social dependency (i.e., arbitrary

user dependency graph that includes cycles) between users and improve the in-

teresting place finding results (Section 4). Second, we compare our scheme with

more state-of-the-art baselines from Point of Interests (POI) recommendation

systems and added more evaluation metrics (e.g., mean average precision) to

evaluate the performance of our scheme (Section 5.2). Third, we perform a new

set of experiments on a second city (i.e., Chicago) to further evaluate the robust-

ness of our scheme (Section 5.3). Finally, we add a few real-world examples to

demonstrate that our algorithms can identify interesting places more accurately

than other baselines (Section 5.3).

2. Related Work

There exists a good amount of work on the topic of Points of Interests

(POI) recommendation [15, 16, 8, 17, 18]. For example, Zhang et al. devel-

oped a kernel density estimation method (i.e., iGSLR) to infer the POI based

on the geographical proximity [15] and social connections between users and
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the categorical information of places (i.e., GeoSoCa) [16]. Zheng et al. pro-

posed an iterative approach (i.e., HITS) to explore users’ travel experience and

discover the interesting places in a simple linear way by using the GPS tra-

jectories generated by users [8]. A geo-topic model (i.e., GTM) was proposed

to estimate interesting places by learning the user’s activity area and various

features of locations [17]. Hu et al. [18] proposed a comprehensive model (i.e.,

STT) that explicitly considered the geographical influence and temporal activity

patterns in POI recommendations. However, most of the above solutions used

supervised learning approaches for personalized POI recommendation, which

requires a significant amount of labeled data to train their models. In contrast,

this paper develops an unsupervised approach to address the interesting place

finding problem that requires no training data.

Natural Language Processing (NLP) has received a significant amount of

attention with the advent of Social Web and online social media, in particu-

lar. Computational Intelligence models and approaches have been developed

to achieve a deeper understanding of natural languages by leveraging semantic

features and context that are not explicitly expressed in the text [19, 20, 21].

For example, Gangemi et al. [20] developed a new model to perform holder

and topic detection in opinion sentences based on the neo-Davidsonian assump-

tion. Lau et al. [21] proposed the design, development and evaluation of a

weakly-supervised cybercriminal network mining approach to facilitate cyber-

crime forensics. In contrast, this paper focuses on structured and easy-to-process

check-in data (i.e., GPS coordinates) extracted from LBSN. However, the NLP

approaches can be integrated with our tool to mitigate data sparsity problems

in social sensing where people might only use text to describe the location they

visited rather than share the actual GPS coordinates. NLP techniques can be

used to reliably transfer the unstructured, human-generated text information

to structured, machine-processible data (e.g., GPS locations) and help achieve

more accurate interesting place finding results.

Maximum likelihood estimation (MLE) approaches have been widely used

in the domain of big data analysis [13, 22, 23, 24, 25]. For example, Vatsavai
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et al. [13] applied an MLE scheme to estimate the parameters of a Gaussian

mixture model that deals with big spatial data. Denoeux et al. [22] developed

an MLE framework to estimate the parameters in parametric statistical models

using uncertain data. Banbura et al. [23] presented an MLE approach to infer

a dynamic factor model on large datasets with an arbitrary pattern of missing

data. Additionally, an MLE-based approach that considers the relative likeli-

hood has been proposed to handle low-quality data [24]. However, the above

work focused on the estimation of continuous variables. In contrast, this pa-

per focuses on a set of binary variables that represent the interestingness of

places. In our MLE framework, we develop an Expectation Maximization (EM)

solution that explores the discrete nature of the estimation variables and social

dependency of users in order to solve the interesting place finding problem in

social sensing.

Our work is also related to event-based social network analysis. For example,

Li et al. defined a social event organization problem and assigned users to

events so as to maximize the overall happiness of the users [26]. She et al.

proposed an event-planning problem by exploring both spatial and temporal

constraints and maximizing the overall satisfaction of participants [27]. Liu et al.

identified an event-based social network as a co-existence between both online

and offline social interactions and studied its properties [28]. In addition, a new

arrangement scheme has been proposed to solve a more general event-participant

arrangement problem by considering the conflicts of different events [29]. Tong

et al. defined the problem of bottleneck-aware social event arrangement and

developed greedy heuristic algorithms to solve the problem [30]. Our work

differs from the above works in two aspects: (i) this paper develops a new

rigorous analytical framework to discover interesting places for average people;

(ii) this work aims at jointly estimating both the user’s travel experience and

the interestingness of places using an unsupervised approach.
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3. Problem Formulation

In this section, we formulate the social-aware interesting place finding prob-

lem as a maximum likelihood estimation problem. Consider a scenario where

a group of M users, denoted by U1, U2, ..., UM , who visit a set of N places,

denoted by P1, P2, .., PN . For simplicity, we focus on the binary case on the in-

terestingness of a place (i.e., a place is either interesting or not) 2. In particular,

we let Ui denote the ith user and Pk denote the kth place. Furthermore, we let

Pk = I denote that place Pk is interesting and Pk = Ī denote that place Pk is

not interesting. In our work, we define the interesting places as those in which

average people may have a strong interest in visiting and sharing their check-in

trace on social media (e.g., parks, museums, historic sites, scenic trails, etc.).

Additionally, we define a User-Place Matrix H to reflect the visiting behavior

of users. In particular, the element Hi,k = 1 when user Ui visits place Pk and

Hi,k = 0 otherwise.

Furthermore, we explicitly consider the social dependency between users in

our model. This is motivated by the observation that the visiting behavior of

users is highly correlated with their social connections. For example, classmates

are likely to visit the same school they attend and friends are likely to go to the

same restaurant or bar together. Simply counting the visits from nonindepen-

dent users in the same way as independent users could easily lead to many false

positives in the interesting place identification results. To address this problem,

we need to explicitly model the user’s social dependency in our interesting place

finding problem. Therefore, we define a User-Dependency Matrix D to repre-

sent the social dependency between users. In particular, the elements Dij = 1

if user Ui and user Uj are friends and Dij = 0 otherwise. Note that D is a sym-

metric matrix as we only consider bi-directional friendship (e.g., friendship on

Facebook) in this paper. It is trivial to extend our model and solution to handle

2It turns out our solution presented in the next section could also provide a probabilistic

metric to evaluate how interesting a place would be.

8



directional friendship as well. Using the D matrix, we can divide the whole set

of users into C independent groups where users in the same independent groups

have non zero components in D and users in different independent groups have

zero components in D.

We formulate the social-aware interesting place finding problem as follows.

First, we define a few important items that will be used in the problem for-

mulation. If user Ui is an independent user (i.e., Ui has no social connections

with other users), we denote the travel experience of user Ui by ti, which is the

probability that a place is interesting given that user Ui visits it. If user Ui is

a non-independent user (i.e., Ui has social connections with other users), for a

friend user Uj of Ui, we denote the dependent travel experience of Ui by ti,j

where ti,j is the probability that a place is interesting and the friend Uj visits

this place given that Ui visits it. Formally, ti and ti,j are defined as:

ti = Pr(Pk = I|Hi,k = 1)

ti,j = Pr(Pk = I,Hj,k = 1|Hi,k = 1) (1)

For independent users, let us further define Ti to be the probability that

user Ui visits the place Pk given that the place is interesting, and let Fi be the

probability that user Ui visits the place Pk given that the place is not interesting.

For non-independent users, we define Ti,j as the probability that user Ui visits

the place Pk given that the place is interesting and his/her friend Uj also visits

the place. Similarly, we also define Fi,j as the probability that user Ui visits the

place Pk given that the place is not interesting and his/her friend Uj also visits

the place. Formally, Ti, Ti,j , Fi and Fi,j are defined as follows:

Ti = Pr(Hi,k = 1|Pk = I) Ti,j = Pr(Hi,k = 1|Hj,k = 1, Pk = I)

Fi = Pr(Hi,k = 1|Pk = Ī) Fi,j = Pr(Hi,k = 1|Hj,k = 1, Pk = Ī) (2)

Additionally, we denote the prior probability that user Ui visits a place by si

(i.e., si = Pr(Hi,k = 1)) and denote d as the prior probability that a randomly

chosen place is interesting (i.e., d = Pr(Pk = I)). Based on Bayes’ theorem, we
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Table 2: The Summary of Notations

Description Notation

Set of Users U

Set of Places P

User-Place Matrix H

Set of Independent Group C

User-Dependency Matrix D

User Visit Probability si = Pr(Hi,k = 1)

Travel Experience (Independent Users) ti = Pr(Pk = I|Hi,k = 1)

Travel Experience (Non-independent Users) ti,j = Pr(Pk = I,Hj,k = 1|Hi,k = 1)

Conditional Interesting Place Visiting Probability (Independent Users) Ti = Pr(Hi,k = 1|Pk = I)

Conditional Interesting Place Visiting Probability(Non-independent Users) Ti,j = Pr(Hi,k = 1|Hj,k = 1, Pk = I)

Conditional Non-interesting Place Visiting Probability (Independent Users) Fi = Pr(Hi,k = 1|Pk = Ī)

Conditional Non-interesting Place Visiting Probability (Non-independent Users) Fi,j = Pr(Hi,k = 1|Hj,k = 1, Pk = Ī)

have:

Ti =
ti × si
d

, Fi =
(1− ti)× si

(1− d)

Ti,j =
ti,j × si
tj × sj

, Fi,j =
(1− ti,j)× si
(1− tj)× sj

(3)

Table 2 summarizes the introduced notations.

Therefore, the social-aware interesting place finding problem can be formu-

lated as a Maximum Likelihood Estimation (MLE) problem: given the User-

Place Matrix H, the User-Dependency Matrix D, our goal is to estimate both

the interestingness of each place and the travel experience of each user. For-

mally, we compute:

∀k, 1 ≤ k ≤ N : Pr(Pk = I|H,D)

∀i, 1 ≤ i ≤M : Pr(Pk = I|Hi,k = 1) (4)

4. Social-aware Interesting Place Finding

In this section, we solve the interesting place finding problem formulated in

Section 3 by developing a Social-aware Interesting Place Finding Plus (SIPF+)

scheme.
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4.1. Likelihood Function Development

The Expectation Maximization (EM) algorithm is a commonly used opti-

mization technique to find the maximum-likelihood estimates of parameters in

a statistical model where data is incomplete [31]. We use the EM algorithm to

solve the MLE problem formulated in the previous section because: (i) we do

not know the interestingness of places a priori (i.e., incomplete data) and we

use the latent variables in EM to model the unknown interestingness of those

places; (ii) the likelihood function of our problem is intractable and we develop

an EM based algorithm to derive the optimization solution.

To apply the EM algorithm to solve an MLE problem, we first need to define

a likelihood function L(θ;X,Z) = p(X,Z|θ), where θ denotes the parameter vec-

tor, X is the observed data, and Z represents the latent variables. The iterative

computation of an EM algorithm mainly contains two steps: the expectation

step (E-step) and the maximization step (M-step). In particular, the E-step

estimates the conditional expectation of the latent variables Z and the M-step

finds the parameters θ that maximize the expectation function in the E-step.

Formally, they are given as:

E-step: Q(θ|θ(n)) = EZ|x,θ(n) [logL(θ;x, Z)] (5)

M-step: θ(n+1) = arg max
θ
Q(θ|θ(n)) (6)

In order to solve the MLE problem we formulated in the previous sec-

tion, let us first define the likelihood function of our MLE problem. In the

interesting place finding problem, the observed data is the User-Place Ma-

trix H and the User-Dependency Matrix D. The estimation parameter θ =

(T1, ..., TM ;F1, ..., FM ;T1,j , ..., TM,j ;F1,j , ..., FM,j ; d), where Ti, Fi, Ti,j , Fi,j are

defined in Equation (2) and d is defined in Equation (3). d reflects the prior

probability a randomly chosen place is interesting. Moreover, we define a vec-

tor of latent variables Z to indicate the interestingness of places. Specifically,

we have a corresponding variable zk for each place Pk such that zk = 1 if Pk

is interesting and zk = 0 otherwise. The variables calculated from the likeli-

hood function include the estimation parameter θ and hidden variables. These
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variables can be used to estimate the interestingness of places and the travel

experience of users.

Hence, the likelihood function of social-aware interesting place finding prob-

lem can be written as:

L(θ;X,Z) = Pr(X,Z|θ)

=

N∏
k=1

{ ∏
g∈C

[∏
i∈g

(T
Hi,k

i (1− Ti)(1−Hi,k))(|g|==1)

∏
j∈g

((T
Hi,k && Hj,k

i,j (1− Ti,j)(1−Hi,k) && Hj,k)Di,j )(|g|>1)

]
× d× zk

+

[∏
i∈g

(F
Hi,k

i (1− Fi)(1−Hi,k))(|g|==1)

∏
j∈g

((F
Hi,k && Hj,k

i,j (1− Fi,j)(1−Hi,k) && Hj,k)Di,j )|g|>1

]
× (1− d)× (1− zk)

}
(7)

where Hi,k = 1 when user Ui visits place Pk and 0 otherwise. Di,j = 1 when

user Ui is a friend of Uj and 0 otherwise. |g| denotes the size of the independent

group g. The “&&” represents the logical “AND” for binary variables. The

likelihood function represents the likelihood of the observed data (i.e., H and

D) and the values of hidden variables (i.e., Z) given the estimation parameters

(i.e., θ).

4.2. Social-aware Interesting Place Finding Scheme

Given the above mathematical formulation, we derive E and M steps of the

proposed SIPF+ scheme. First, we derive the Q function for the E-step, given

by Equation (5), using the likelihood function derived in Equation (7). The
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E-step is given as follows:

Q(θ|θ(n)) = EZ|X,θ(n) [logL(θ;X,Z)]

=

N∑
k=1

∑
g∈C

{
Z(n, k)×

[
(|g| == 1)

∑
i∈g

((Hi,klogTi + (1−Hi,k)log(1− Ti))

+ (|g| > 1)(
∑
j∈g

Di,j((Hi,k && Hj,k)logTi,j + (1−Hi,k) && Hj,k)log(1− Ti,j)) + logd)

]

+ (1− Z(n, k))×

[
(|g| == 1) ·

∑
i∈g

((Hi,klogFi + (1−Hi,k)log(1− Fi))

+ (|g| > 1)(
∑
j∈g

Di,j((Hi,k && Hj,k)logFi,j

+ (1−Hi,k) && Hj,k)log(1− Fi,j)) + log(1− d))

]}
(8)

where Z(n, k) = Pr(zk = 1|Xk, θ
(n)). It is the conditional probability of the

place Pk to be interesting given the observed data Xk and current estimate of

θ, where Xk represents the kth column of the User-Place Matrix H.

For the M-step, in order to get the optimal θ∗ that maximizes Q function,

we set partial derivatives of Q(θ|θ(n)), given by Equation (8), with respect to θ

to 0. In particular, we get the solutions of ∂Q
∂Ti

= 0, ∂Q
∂Fi

= 0, ∂Q
∂Ti,j

= 0, ∂Q
∂Fi,j

= 0

and ∂Q
∂d = 0 in each iteration, we can get expressions of the optimal T ∗i , F ∗i ,

T ∗i,j , F
∗
i,j and d∗:

T
(n+1)
i = T ∗i =

∑
k∈Hi

Z(n, k)∑N
k=1 Z(n, k)

F
(n+1)
i = F ∗i =

∑
k∈Hi

(1− Z(n, k))∑N
k=1(1− Z(n, k))

T
(n+1)
i,j = T ∗i,j =

∑
k∈Hi,j

Z(n, k)∑
k∈Hj

Z(n, k)
F

(n+1)
i,j = F ∗i,j =

∑
k∈Hi,j

(1− Z(n, k))∑
k∈Hj

(1− Z(n, k)
)

d(n+1) = d∗ =

∑N
k=1 Z(n, k)

N
(9)

where Hi is the set of places that user Ui visits and Hi,j is the set of places both

user Ui and Uj visit.
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5. Evaluation

In this section, we evaluate the performance of the SIPF+ scheme using

two real-world datasets collected from location-based social network services.

We first describe the experiment settings and data pre-processing steps. Then,

we introduce the state-of-the-art baselines and evaluation metrics used in our

experiments. Finally, we present the evaluation results of SIPF+ scheme in com-

parison to all baselines and demonstrate the effectiveness of explicitly consider-

ing the user’s travel experience and social dependency in solving the interesting

place finding problem in social sensing.

5.1. Experiment Settings

5.1.1. Dataset Statistics

In this evaluation, we use two different datasets, which are collected from

location-based social network services, namely, Brightkite3 and Gowalla4 [4].

In the location-based social network services, users check in and share their

location information using the following format: (user ID, latitude, longitude,

timestamp). The Brightkite dataset was collected from April 2008 until October

2010 and the Gowalla dataset was collected from February 2009 until October

2010. Other statistics of these two datasets are shown in Table 3.

Table 3: Dataset Statistics

Description Brightkite Gowalla

Number of Users 58,228 107,092

Number of Friendships 214,078 950,327

Number of Check-ins 4,491,143 6,442,890

Table 4 shows the statistics on the percentage of check-in points at inter-

esting places and non-interesting places from the two datasets in the city of

Chicago and San Francisco, respectively. In Table 4, we can observe that users

3http://snap.stanford.edu/data/loc-brightkite.html
4http://snap.stanford.edu/data/loc-gowalla.html
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check in more frequently at interesting places (e.g., parks, museums, historic

sites) than non-interesting places (e.g., work place, transit centers). This ob-

servation provides the basis for our proposed model to find interesting places

by analyzing the collective check-in behaviors of online social media users. We

also observe that users check in at non-interesting places, as well, which makes

the interesting place finding problem using social sensing data an interesting,

but non-trivial, problem to solve. We show that our SIPF+ scheme can find

interesting places more accurately than the state-of-the-art baselines through

real-world experiments in the rest of this section.

Table 4: Percentage of Check-in Points at Interesting vs Non-interesting Places

Data Trace Interesting Place Non-interesting Place

Chicago - Brightkite 60.5% 39.5%

Chicago - Gowalla 63.2% 36.8%

San Francisco - Brightkite 59.8% 40.2%

San Francisco - Gowalla 67.2% 32.8%

5.1.2. Data Pre-Processing

To evaluate our method in real-world settings, we conducted data pre-

processing in two steps: (i) clustering all raw geographical check-in points into

meaningful clusters that represent places in the physical world; (ii) identifying

independent groups from all users based on their social connections. Using the

meta-data generated by the above steps, we can create the User-Place Matrix

H and User-Dependency Matrix D we discussed in Section 3. In our evaluation,

we select two popular tourist destinations, San Francisco and Chicago, as our

target cities from the two real-world datasets.

For the clustering step, we used the K-means clutering algorithm [32] to

first cluster the raw check-in records into intermediate clusters without any

geospatial-semantic meanings allocated to those clusters. In the data pre-

processing step, our goal is to identify raw clusters that can be identified as

specific places in our model. In our experiments, we found that most of the

user’s check-in points were naturally centered on some locations in the city.
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Therefore, we use a K-means clustering algorithm by taking the places with

dense check-in points as centroids and minimizing the mean squared distance

from each data point to its nearest centroid [33]. We compared the clustering

outputs of the K-means algorithm with other clustering algorithms (e.g., DB-

SCAN) and found that the results from K-means make the most sense (i.e.,

identify the largest number of places in a city). Then, we re-organized the raw

clusters into meaningful places by referring to the Point-of-Interest information

from Google Map 5. For the Brightkite dataset, we identified 83 places in San

Francisco, with 36 interesting places and 47 not interesting places. In Chicago,

we identified 70 places in total, with 36 interesting places and 34 not interesting

places. For the Gowalla trace dataset, we identified 92 places in San Francisco,

with 39 interesting places and 53 not interesting places. In Chicago, we identi-

fied 74 places in total, with 39 interesting places and 35 not interesting places.

As a result, we created the User-Place Matrix H by associating each user with

the places the user visited.

For the independent group identification step, we used a community detec-

tion algorithm called SLPA [34] to find independent groups of users. We first

obtain the social connections between users from the friendship information

within the dataset. In particular, we generated the user dependency graph as

an undirected graph G = (V,E) where V and E represents the set of users and

their friendship, respectively: if u is a friend of v in the dataset, we have a

link between u and v. We then applied the SPLA algorithm on the graph G

to partition the whole set of users into different independent groups. Using the

output of this step, we generated the User-Dependency Matrix D.

5.2. Baselines and Evaluation Metric

5.2.1. Baselines

In the evaluation, we compare the performance of the SIPF+ scheme with

the following state-of-the-art baselines. The first baseline is Voting, which com-

5 https://www.google.com/maps
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putes the interestingness of a place simply by counting the number of times the

place is visited. The second baseline is Sums-Hubs [35], which explicitly consid-

ers the difference in users’ travel experience when it computes the interestingness

of a place. The third baseline is Regular-EM, which is shown to outperform four

state-of-the-art techniques in identifying interesting entities from noisy social

sensing data [10]. Additionally, we also compare the performance of SIPF+

with four recent Point-of-Interest recommendation solutions. The first baseline

is iGSLR [15], which explored the influence that geographical proximity has on

users’ check-in behaviors when computing the interestingness of a place. The

second baseline is GeoSoCa [16], which explored geographical, social, and cat-

egorical information for Point-of-Interest recommendations. The third baseline

is STT [18], which captured the spatial and temporal aspects of check-ins to

recommend locations. The fourth baseline is GTM [17], which developed a geo-

topic model to consider the user’s activity area in recommending interesting

places.

5.2.2. Evaluation Metric

In the experiments, we use two sets of evaluation metrics. The first set

of metrics are used to evaluate the accuracy of different techniques in terms

of identifying interesting places. These metrics include precision, recall, and

F1-measure [36]. The second set of metrics are used to evaluate the ranking

performance of different schemes. 6 These metrics include mean average preci-

sion (MAP) [37] and normalized discounted cumulative gain (NDCG) [38].

5.3. Evaluation Results

In this section, we conduct experiments on two real-world datasets to com-

pare SIPF+ scheme with the above state-of-the-art baselines in terms of estima-

tion accuracy and ranking performance. Independent from the two datasets we

6To evaluate the ranking performance, we ranked all places using the estimated interest-

ingness scores of places returned by different schemes.
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used in evaluation, we collected ground truth values (i.e. whether a place is in-

teresting) from four widely used travel recommendation websites: TripAdvisor,

Planet Aware, San Francisco Travel, and CityPass. We then decide whether a

place is interesting using the following rubric:

• Interesting places: Places that have been recommended by at least two

of the above travel recommendation websites or manually verified by the

researchers using external sources: online social media that are different

from those used in this paper (e.g., Foursquare and Twitter). For example,

if a place has been frequently reported as an interesting place on social

media by average people, we will consider this place as an interesting place

(even though this place might not be recommended by traditional travel

websites due to the coverage and freshness limitations that we discussed

in the introduction of the paper).

• Unconfirmed places: Places that do not satisfy the requirement of inter-

esting places.

Note that “unconfirmed places” may include both places that are not inter-

esting or potentially interesting places that cannot be independently verified by

using the above rubric. Hence, our evaluation results present pessimistic bounds

on the performance.

5.3.1. Estimation Performance

We first conduct experiments to evaluate the estimation performance of all

schemes in terms of precision, recall, and F1-measure. The results on San Fran-

cisco using the Brightkite dataset are shown in Figure 1. We observe that the

SIPF+ outperforms all the compared baselines in terms of precision, recall, and

F1-measure. The largest performance gain achieved by SIPF+ on precision over

the best performed baseline (i.e., SIPF) is 6%. From the above results, we can

observe that our extended model (i.e., SIPF+) outperforms the previous model

(i.e., SIPF), as well as other state-of-the-art baselines. The performance gain
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is achieved by explicitly considering more complex social dependency (i.e., ar-

bitrary user dependency graphs that include cycles) between users in the new

SIPF+ scheme. The results on Gowalla dataset are shown in Figure 2. Again,

we observe that SIPF+ continues to outperform other baselines and the largest

performance gain achieved by SIPF+ on recall, compared to the best performed

baseline, is 3%. We repeated the same experiments for the city of Chicago. The

results for Brightkite and Gowalla are shown in Figure 3 and 4, respectively.

We observe that SIPF+ continue to outperform all compared baselines.
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Figure 1: Estimation Accuracy (San Francisco,

Brightkite Dataset)
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Figure 2: Estimation Accuracy (San Francisco,

Gowalla Dataset)
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Figure 3: Estimation Accuracy (Chicago,

Brightkite Dataset)
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Figure 4: Estimation Accuracy (Chicago, Gowalla

Dataset)

5.3.2. Ranking Performance

We also evaluate the ranking performance of all schemes and use MAP [37],

NDCG@10, NDCG@15, and NDCG@20 [38] as the evaluation metrics. In Fig-

ure 5 and Figure 6, we compare the performance of SIPF+ to all baselines, in

terms of MAP, on the Brightkite dataset and the Gowalla dataset, respectively.
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We observe that SIPF+ achieves the highest MAP score compared to all base-

lines. In Figure 7 and Figure 8, we compare the performance of SIPF+ to all

baselines, in terms of NDCG@n, on two datasets, respectively. We observe that

SIPF+ continues to outperform all baselines at different values of n. These

results demonstrate that SIPF+ achieves the best ranking performance among

all compared schemes. Similarly, the results for Chicago, in terms of MAP, are

shown in Figure 9 and Figure 10. The results for Chicago, in terms of NGCDn,

are shown in Figure 11 and Figure 12. We consistently observe that SIPF+

achieves the best performance compared to all other baselines.
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Figure 5: MAP Evaluation (San Francisco,

Brightkite Dataset)
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Figure 6: MAP Evaluation (San Francisco,

Gowalla Dataset)
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Figure 7: NDCG@n Evaluation (San Fran-

cisco, Brightkite Dataset)
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Figure 8: NDCG@n Evaluation on San Fran-

cisco in Gowalla Dataset
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Figure 9: MAP Evaluation (Chicago,

Brightkite Dataset)
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Figure 10: MAP Evaluation (Chicago,

Gowalla Dataset)

In addition to the above quantitative analysis, we also present the top 10

interesting places identified by all schemes from the Brightkite dataset in San

20



NDCG@10 NDCG@15 NDCG@20

N
D

C
G

0

0.2

0.4

0.6

0.8

1

1.2
SIPF+
SIPF
Reg-EM
GeoSaCa
iGSLR
STT
GTM
Sums-Hubs
Voting

Figure 11: NDCG@n Evaluation (Chicago,

Brightkite Dataset)
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Figure 12: NDCG@n Evaluation (Chicago,

Gowalla Dataset)

Francisco in Table 5. Note that the interesting places (i.e., true positives) are

highlighted in the table. We observe all the top ten places found by SIPF+

in the Brightkite dataset are, indeed, interesting. However, quite a few top

places found by the best performing baseline are not really interesting. The

performance improvement achieved by SIPF+ can help users schedule their

visits more efficiently and save their time and money from making unnecessary

trips to places that are not interesting. Results from the Gowalla dataset are

similar and we do not report them due to limited space.

# Interesting Places found by SIPF+ Interesting Places found by the Best

Baseline

1 San Francisco Museum of Modern

Art

AT&T Park

2 Chinatown in San Francisco Contemporary Jewish Museum

3 Union Square in San Francisco Ghirardelli Square

4 AT&T Park Coit Tower

5 San Francisco Fisherman’s Wharf Food Court Restaurants near Cabrillo

Street

6 The Cable Car Museum Aquarium of the Bay

7 Aquarium of the Bay Marina Middle School

8 Coit Tower Japanese Tea Garden

9 Japanese Tea Garden Kaiser Permanente Medical Center

10 San Francisco City Hall San Francisco Ferry Building

Table 5: Top 10 Interesting Places Found by SIPF+ and Best Performed Baselines in the

Brightkite Dataset in San Francisco (Highlighted Places are Truth Positives)

Finally, we evaluate the execution time and memory cost of all compared

algorithms. We run all algorithms on a regular laboratory computer (4 cores and
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2 GHZ for each core, 8GB memory). Table 6 and Table 7 show the execution

time and memory cost of all algorithms on the Brightkite and the Gowalla

dataset, respectively. From those results, we observe that the execution time of

our proposed SIPF+ is comparable to most of the non-trivial baselines and the

memory overhead is small and affordable on a regular laboratory computer.

Table 6: Execution Time and Memory Cost Evaluation on Brightkite Datasets

Chicago San Francisco

Algorithm Execution Time (s) Memory Cost (KB) Execution Time (s) Memory Cost (KB)

SIPF+ 5.43 6583 5.51 6941

SIPF 5.02 6560 5.36 6852

Reg-EM 1.36 6468 1.54 6786

GeoSaCa 7.54 6908 7.73 8876

iGSLR 5.56 6528 6.30 6984

STT 5.52 6644 6.40 7512

GTM 2.43 6592 2.57 6652

Sums-Hubs 1.14 6320 1.23 6732

Voting 0.54 5748 0.65 6348

Table 7: Execution Time and Memory Cost Evaluation on Gowalla Datasets

Chicago San Francisco

Algorithm Execution Time (s) Memory Cost (KB) Execution Time (s) Memory Cost (KB)

SIPF+ 5.72 7713 6.01 7801

SIPF 5.35 7662 5.84 7702

Reg-EM 1.48 7600 1.74 7656

GeoSaCa 9,82 9656 10.03 9056

iGSLR 5.82 7844 6.96 7863

STT 5.61 7500 6.52 7749

GTM 2.51 7968 2.81 7541

Sums-Hubs 1.25 7332 1.31 7456

Voting 0.64 6860 0.71 6986

6. Discussions and Future Work

An important assumption made in our framework is that all places are as-

sumed to be independent. However, some places may have underlying depen-

dency imposed by the physical world. One example is the location dependency.

For example, many national museums in Washington D.C. are located in the

same area. Users who visit one museum are also likely to visit others. However,
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they may not provide check-in points at each museum they visit. Ignorance of

such physical dependency between places is likely to generate suboptimal results

in finding all interesting places. Hence, the following problem becomes inter-

esting to investigate: how can we incorporate the dependency between places

appropriately into our framework so that the estimation accuracy in finding

interesting places can be further improved? We have successfully applied the

MLE framework to handle non-independent variables in cyber-physical system

(CPS) applications [39]. We believe that similar insights could be leveraged to

effectively address the aforementioned place dependency problem.

The only input to the SIPF+ scheme is the User-Place Matrix H and User-

Dependency Matrix D. This simple requirement on the input makes the pro-

posed method very robust and generally applicable to different application sce-

narios. However, we might still be able to improve the performance of SIPF+

if additional information about users (e.g., user’s travel experience, home city,

working place, etc.) and places (e.g., construction time, historic background,

etc.) is known to the application. For example, by knowing some of the users’

travel experience a priori, we can initialize the SIPF+ scheme with a better

start point (compared to a random start point). This will greatly expedite

the convergence process of the EM algorithm and improve the response time

of SIPF+ in large scale social sensing applications. The key challenge here is

how to incorporate the additional information into the proposed model without

sacrificing the rigidity of the analytical framework. We are actively working on

the above extensions.

7. Conclusion

This paper develops a new social-aware maximum likelihood estimation

framework to accurately identify interesting places in a city through the social

sensing application paradigm. The proposed SIPF+ scheme explicitly incor-

porates both the user’s travel experience and social relationship into a rigor-

ous analytical framework. The proposed approach jointly estimates both the

user’s travel experience and the interestingness of a place using an Expecta-
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tion Maximization algorithm. Compared to the traditional travel recommenda-

tion websites, the SIPF+ can find more interesting places that are visited by

common citizens. We evaluated the SIPF+ scheme on two real-world datasets

collected from location-based social network services. The results showed that

the SIPF+ scheme achieved non-trivial performance gains in identifying more

interesting places, while simultaneously lowering the number of not interest-

ing places misidentified as interesting, when compared to the state-of-the-art

baselines. The results of this paper are important because they lay out an ana-

lytical foundation to improve the accuracy in interesting place finding by using

a principled approach.
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