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Abstract—This paper presents a confidence-aware maximum
likelihood estimation framework to solve the truth estimation
problem in social sensing applications. Social sensing has emerged
as a new paradigm of data collection, where a group of individ-
uals volunteer (or are recruited) to share certain observations
or measurements about the physical world. A key challenge in
social sensing applications lies in ascertaining the correctness of
reported observations from unvetted data sources with unknown
reliability. We refer to this problem as truth estimation. The
prior works have made significant efforts to solve this problem
by developing various truth estimation algorithms. However, an
important limitation exists: they assumed a data source makes all
her/his observations with the same degree of confidence, which
may not hold in many real-world social sensing applications. In
this paper, we develop a new confidence-aware truth estimation
scheme that removes this limitation by explicitly considering
different degrees of confidence that sources express on the re-
ported data. The new truth estimation scheme solves a maximum
likelihood estimation problem to determine both the correctness
of collected data and the reliability of data sources. We compare
our confidence-aware scheme with the state-of-the-art baselines
through both an extensive simulation study and three real world
case studies based on Twitter. The evaluation shows that our
new scheme outperforms all compared baselines and significantly
improves the accuracy of the truth estimation results in social
sensing applications.

Index Terms—Social Sensing, Confidence-Aware, Truth Esti-
mation, Data Quality, Maximum Likelihood Estimation, Expec-
tation Maximization

I. INTRODUCTION

This paper presents a confidence-aware maximum likeli-
hood estimation approach to solve the truth estimation problem
in social sensing applications. We refer by social sensing to a
broad set of sensing applications where individuals volunteer
or are recruited to collect and share data about the physical
environment. For example, people may report their observa-
tions during a hurricane or earthquake and broadcast such real-
time information through online social media (e.g., Twitter).
Alternatively, they may also download an app on smartphones
to report litter locations or potholes on city streets (i.e., geo-
tagging). Considering the open data collection paradigm and
potentially unreliable nature of unvtted human sources, a key
challenge of social sensing applications lies in accurately
ascertaining the correctness of reported data, which is referred
to as truth estimation problem in social sensing.

Much of the research in the sensor network community

focused on physical sensors. This includes dedicated devices
embedded in their environment [20], as well as human-
centric sensing devices such as cell-phones and wearables [18].
Recent research proposed challenges with the use of humans as
sensors [28]. Clearly, humans differ from traditional physical
devices in many respects. Importantly to the truth estimation
problem in social sensing, they lack a design specification
and a reliability standard, making it hard to define a generic
noise model for sources. Hence, many techniques that estimate
probability of error for physical sensors do not directly apply
in social sensing applications.

Reputation systems have been successfully applied in sce-
narios where source reliability is the issue [14], [17]. The
assumption is that, when sources are observed over time, their
reliability is eventually uncovered. Social sensing applications,
however, often deal with scenarios, where a new event requires
data collection from sources who have not previously partici-
pated in other data collection campaigns, or perhaps not been
“tested” in the unique circumstances of the current event. For
example, a hurricane strikes New Jersey. This is a rare event.
We do not know how accurate the individuals who fled the
event are at describing damage left behind. No reputation is
accumulated for them in such a scenario. Then, an interesting
question arises: how do we determine which observations to
believe with no prior knowledge on the reliability of data
sources?

Truth estimation algorithms have been developed to address
the above question [23], [34], [36], [41], [45]. These solutions
jointly assess both the reliability of sources and the quality
of their observations in an iterative fashion without knowing
either of them a priori. However, an important limitation
exists in the current solutions: they assumed a data source
makes all her/his observations with the same degree of
confidence. This assumption does not hold in real world social
sensing applications where users may express various degrees
of confidence on their reported data. For example, in case of
a fire disaster, a user may tweet: i) “I saw the building at the
corner of Main and Adam street is on fire! Photo taken: http://
...” or ii) “RT@Mike: I heard the alarm on Main street, but not
sure if there was a fire.”. Clearly, the user expresses a higher
degree of confidence in the first tweet than the second one.

The main contribution of this paper lies in developing a
new confidence-aware truth estimation scheme to explicitly



consider different degrees of confidence that a source may
express on reported observations. In particular, we formulated
a confidence-aware truth estimation problem in social sensing
as a maximum likelihood estimation problem. We derived an
optimal solution, based on expectation maximization, which
assigns the true values to data items by observing which source
reports what observations as well as the degree of confidence
associated with each reported observation. We evaluate the
proposed new scheme through both an extensive simulation
study and three real world case studies based on Twitter.
Evaluation results show that the confidence-aware truth es-
timation scheme outperforms the state-of-the-art baselines in
the literature by significantly improving the accuracy of the
truth estimation results. The results of this paper are important
because they allow social sensing applications to accurately
estimate the data quality and source reliability while taking
into account the source confidence on the reported data under
a rigorous analytical framework.

The rest of this paper is organized as follows: we review
related work in Section II. In Section III, we present the new
confidence-aware truth estimation model for social sensing
applications. The proposed maximum likelihood estimation
framework is discussed in Section IV. Simulation and real
world case study results are presented in Section V. We discuss
the limitations of current model and future work in Section VI.
Finally, we conclude the paper in Section VII.

II. RELATED WORK

Social sensing has emerged as a new paradigm for collecting
sensory measurements by means of “crowd-sourcing” sensory
data collection tasks to a human population [1]. The ideas of
getting people involved into the loop of the sensing process
have been investigated at length in participatory sensing [5]
and opportunistic sensing [16] applications. Examples of
some early social sensing applications include CenWits [11],
CarTel [12], and BikeNet [8]. A recent survey of social
sensing [2] covers many sensing challenges in human context
such as accommodating energy constraints of mobile sensing
devices [19], protecting the privacy of participants [4], and
promoting social interactions in different environments [25].
It also suggests that humans can actually act as sensors by
contributing information through “sensing campaigns” [26] or
social data scavenging (e.g., via Twitter and Youtube) [44].
However, the truth estimation problem still remains as an
open research question in social sensing. This paper develops
a confidence-aware truth estimation scheme that allows social
sensing applications to accurately quantify the reliability of
human sensed data while exploiting the confidence sources
express with their claims.

Techniques for deriving accurate conclusions from sources
whose reliability is unknown are referred to as fact-finders in
data mining and machine learning literature. A comprehensive
survey of fact-finders used in the context of trust analysis of
information networks can be found in [9]. One of the early
papers on the topic was Hubs and Authorities [15] that uses
iterative algorithm to compute both source trustworthiness

and claim credibility. Other fact-finding schemes enhanced
these basic frameworks by using more refined heuristics [41],
incorporating analysis on properties of claims [21] and depen-
dency between sources [7]. More recent works came up with
some new fact-finding algorithms to handle the background
knowledge [22], quantify the accuracy of source and data cred-
ibility [35] and use slot filling systems for multi-dimensional
fact-finding [43]. In this paper, we will use insights from
the above work to develop a new truth estimation framework
that addresses the challenges of unknown source reliability
and diverse degrees of source confidence in social sensing
applications.

Maximum likelihood estimation (MLE) framework has been
used extensively in wireless sensor networks (WSN) for vari-
ous estimation and data fusion tasks [27], [40]. For example,
Sheng et al. developed a MLE method that uses acoustic signal
energy measurements from individual sensors to estimate
locations of multiple sources [27]. Xiao et al. presented a
distributed consensus based MLE approach to compute the
unknown parameters of sensory measurements corrupted by
Gaussian noise [40]. The MLE framework has also been
applied to address clock synchronization [39], target track-
ing [37], and compressive sensing [6] in WSN. However, the
above work primarily focused on the estimation of continuous
variables from measurements of physical sensors. In this paper,
we focus on estimating a set of binary variables that represent
either true or false statements about the physical world from
human sensed observations. The MLE problem we solved is
actually harder due to the discrete nature of the estimated
variables and the inherent complexity of modeling humans
as sensors in social sensing.

Finally, our work is also related with a type of information
filtering system called recommendation systems [13]. Expec-
tation Maximization (EM) has been used as an optimization
approach for both collaborative filtering [31] and content
based recommendation systems [24]. For example, Wang et
al. developed a collaborative filtering based system using the
EM approach to recommend scientific articles to users of an
online community [31]. Pomerantz et al. proposed a content-
based system using EM to explore the contextual information
to recommend movies [24]. However, the truth estimation
in social sensing studies a different problem. Our goal is to
estimate the correctness of observations from a large crowd of
unvetted sources with unknown reliability and various degrees
of confidence rather than predict users’ ratings or preferences
of an item. Moreover, recommendation systems commonly
assume a reasonable amount of good data is available to train
their models while little is known about the data quality and
the source reliability a priori in social sensing applications.

III. CONFIDENCE-AWARE TRUTH ESTIMATION PROBLEM
IN SOCIAL SENSING

In this section, we formulate the confidence-aware truth es-
timation problem in social sensing as an optimization problem
(in the sense of maximum likelihood estimation). In particular,
we consider a group of M sources, namely, S1, S2,...,SM , who



collectively report a set of N observations about the physical
world, namely, C1, C2,..,CN . Since we normally do not know
the correctness of such observations a priori, we refer to them
as claims. In this paper, we focus on the case of binary
claims because the states of the physical environment in many
applications can be represented by a set of statements that are
either true or false. For example, in an application where the
goal is to find potholes on city streets, each possible location
may be associated with one claim that is true if a pothole
presents at that location and false otherwise. Similarly, in
an application that reports the free parking lot on campus,
each parking lot may be associated with a claim that is true
if that parking lot is free and false otherwise. In general,
any statement about the physical world, such as “The bridge
fell down”,“The building X is on fire”, or “The suspect was
captured” can be seen as a claim that is true if the statement
is correct, and false if it is not. We assume, without loss of
generality, that the “normal” state of each claim is negative
(e.g., no potholes on streets and no free parking spots). Hence,
sources report only when a positive value is encountered. Let
Si represent the ith source and Cj represent the jth claim.
Cj = 1 if it is true and Cj = 0 if it is false. We define a
Sensing Matrix SC to represent the relations between sources
and claims, i.e., SiCj = 1 indicates that Si reports Cj to be
true, and SiCj = 0 otherwise.

In social sensing applications, human sources often express
certain degree of confidence in their reported claims. To
capture such confidence information, we define a Confidence
Matrix W , where the element wij represents the degree of
confidence Si expresses on the claim Cj . Considering the
difficulty of measuring the exact degree of confidence from
human generated claims (e.g., text, images, etc.), we define
wij as a discrete variable with K different values. In particular,
wij = k denotes that Si reports the claim Cj to be true with a
confidence degree of k, where k = 1, ...,K. In this paper,
we explicitly consider the source confidence information
and formulate a confidence-aware truth estimation problem in
social sensing as follows.

First, let us define a few important terms that will be used in
the problem formulation. We denote the reliability of source i
as ti, which is the probability a claim is true given the source
Si reports it. Formally ti is given by:

ti = P (Cj = 1|SiCj = 1) (1)

Considering a source may make a claim with different
degrees of confidence, we define tki as the reliability of Si
when it reports a claim with a confidence degree of k, where
k = 1, ...,K. Formally, tki is given by:

tki = P (Cj = 1|SiCj = 1, wij = k) (2)

Therefore,

ti =

K∑
k=1

tki ×
ski
si

k = 1, ...,K (3)

where ski is the probability that Si reports Cj with a confidence
degree of k. For each source, ski can be estimated using the

Confidence Matrix W . Besides, considering different sources
may make different number of claims, we denote the probabil-
ity that Si makes a claim by si. Formally, si = P (SiCj = 1).
Note that si = ΣKk=1s

k
i .

Let us further define Ti,k to be the probability that Si reports
Cj to be true with a confidence degree of k, given that the
claim is indeed true. Similarly, let Fi,k denote the probability
that Si reports Cj to be true with a confidence degree of k,
given that the claim is false. Formally, Ti,k and Fi,k are defined
as follows:

Ti,k = P (SiCj = 1, wij = k|Cj = 1)

Fi,k = P (SiCj = 1, wij = k|Cj = 0) (4)

Using the Bayesian theorem, we can establish the relation
between Ti,k, Fi,k and tki , ski as follows:

Ti,k =
tki × ski
d

Fi,k =
(1− tki )× ski

1− d
(5)

where d represents the prior probability that a randomly chosen
claim is true, which can be jointly estimated in our solution
presented in next section.

Therefore, the confidence-aware truth estimation problem
studied in this paper is presented as a maximum likelihood
estimation (MLE) problem: given only the Sensing Matrix SC
and Confidence Matrix W , our goal is to estimate likelihood
of the correctness of each claim in C. Formally, we compute:

∀j, 1 ≤ j ≤ N : P (Cj = 1|SC,W ) (6)

IV. A CONFIDENCE-AWARE MAXIMUM LIKELIHOOD
ESTIMATION APPROACH

In this section, we solve the maximum likelihood esti-
mation problem formulated in the previous section using
the Expectation-Maximization (EM) algorithm. We start with
a brief review of the EM algorithm and the mathematical
formulation of our problem. We then derive the E and M steps
of the proposed Confidence-Aware EM scheme and summarize
it using the pseudocode.

A. Background and Mathematical Formulation

Intuitively, what the EM algorithm generally does is to
iteratively estimate the values of the unknown parameters of
a model and the values of the latent variables, which are
not directly observable from the data. Such iterative process
continues until the estimation results converge. To apply the
EM algorithm to solve a MLE problem, we need to define a
likelihood function L(θ;X,Z) = p(X,Z|θ), where θ is the
estimation parameter of the model, X is the observed data
and Z is the set of latent variables. The EM algorithm finds
the maximum likelihood estimate of θ and values of Z by
iteratively performing two key steps: Expectation step (E-step)
and Maximization step (M-step) that are given by:

E-step: Q(θ|θ(n)) = EZ|x,θ(n) [logL(θ;x, Z)] (7)

M-step: θ(n+1) = arg max
θ
Q(θ|θ(n)) (8)



For the MLE problem we formulated in Section III,
the observed data is Sensing Matrix SC and the Con-
fidence Matrix W . The estimation parameter is θ =
(T1,k, T2,k, ..., TM,k;F1,k, F2,k, ..., FM,k; d) and k = 1, 2, ..K.
Ti,k and Fi,k are defined in Equation (4) and d represents the
prior probability of a randomly chosen claim to be true. We
also need to define a vector of latent variables Z to indicate
whether a claim is true or false. More specifically, we have
a corresponding variable zj for the jth claim Cj such that:
zj = 1 if Cj is true and zj = 0 otherwise. Most importantly,
in order to incorporate different degrees of confidence a source
may express on her/his claims into the MLE problem, we
define a set of binary variables wkij such that wkij = 1 if
wij = k in Confidence Matrix W and wkij = 0 otherwise.
Therefore, the likelihood function of the confidence-aware
truth estimation problem is given as:

L(θ;X,Z) = p(X,Z|θ)

=

N∏
j=1

{ M∏
i=1

(Ti,1)SiCj && w1
ij × ...× (Ti,K)SiCj && wK

ij

× ((1−
K∑
k=1

Ti,k)1−SiCj )× d× zj

+

M∏
i=1

(Fi,1)SiCj && w1
ij × ...× (Fi,K)SiCj && wK

ij

× ((1−
K∑
k=1

Fi,k)1−SiCj )× (1− d)× (1− zj)
}

(9)

where SiCj = 1 when source Si reports Cj to be true and 0
otherwise and “&&” represents the “AND” logic for binary
variables. The likelihood function represents the likelihood
of the observed data (i.e., SC and W ) and values of hidden
variables (i.e., Z) given the estimation parameters (i.e., θ).

B. Deriving the E and M Steps

Given the above mathematical formulation, we derive E-step
and M-step of the proposed Confidence-Aware EM scheme.
First, we plug the likelihood function, given by Equation (9),
into Equation (7) to derive the E-step as:

Q(θ|θ(n)) = EZ|X,θ(n) [logL(θ;X,Z)]

=

N∑
j=1

{
p(zj = 1|Xj , θ

(n))×
M∑
i=1

{
K∑
k=1

(SiCj && wkij)× logTi,k

+ (1− SiCj)log(1−
K∑
k=1

Ti,k) + logd}

+ p(zj = 0|Xj , θ
(n))×

M∑
i=1

{
K∑
k=1

(SiCj && wkij)× logFi,k

+ (1− SiCj)log(1−
K∑
k=1

Fi,k) + log(1− d)
}

(10)

We then define Z(n, j) = p(zj = 1|Xj , θ
(n)). It is the con-

ditional probability of claim Cj to be true given the observed
data Xj and current estimate of θ, where Xj represents the
jth column of both the Sensing Matrix SC and Confidence
Matrix W . Z(n, j) can be further expressed as:

Z(n, j) =
p(zj = 1;Xj , θ

(n))

p(Xj , θ(n))

=
A(n, j)× d(n)

A(n, j)× d(n) +B(n, j)× (1− d(n))
(11)

where A(n, j) and B(n, j) are defined as follows:

A(n, j) = p(Xj , θ
(n)|zj = 1)

=

M∏
i=1

K∏
k=1

(T
(n)
i,k )SiCj && wk

ij × (1−
K∑
k=1

(T
(n)
i,k )1−SiCj )

B(n, j) = p(Xj , θ
(n)|zj = 0)

=

M∏
i=1

K∏
k=1

(F
(n)
i,k )SiCj && wk

ij × (1−
K∑
k=1

(F
(n)
i,k )1−SiCj )

(12)

A(n, j) and B(n, j) represent the conditional probability re-
garding observations of the claim Cj and current estimation of
parameter θ, given that claim Cj is true and false respectively.

For the M-step, we set partial derivatives of Q(θ|θ(n)) given
by Equation (10) with respect to θ to 0 in order to get the
optimal θ∗ that maximizes Q function. In particular, solving
∂Q
∂Ti,k

= 0, ∂Q
∂Fi,k

= 0 and ∂Q
∂d = 0, we can get expressions of

the optimal T ∗i,k, F ∗i,k and d∗:

T
(n+1)
i,k = T ∗i,k =

Σj∈SWk
i
Z(n, j)

ΣNj=1Z(n, j)

F
(n+1)
i,k = F ∗i,k =

Σj∈SWk
i

(1− Z(n, j))

N − ΣNj=1Z(n, j)

d(n+1) = d∗ =
ΣNj=1Z(n, j)

N
(13)

where N is the total number of claims in the Sensing Matrix
SC and SW k

i denotes the set of claims that source Si reports
with the confidence degree of k.

C. The Confidence-Aware EM Algorithm

In summary of the Confidence-Aware EM Algorithm de-
rived in this section, the input is the Sensing Matrix SC and
Confidence Matrix W obtained from social sensing data. The
output is the maximum likelihood estimation of estimation
parameters and values of latent variables, which can be used to
compute both source reliability and the correctness of claims.
The E-step and M-step of the Confidence-Aware EM algorithm
are shown in Equation (11) and Equation (13) respectively.
The convergence analysis has been done for EM scheme and
it is beyond the scope of this paper [38]. We summarize the
Confidence-Aware EM scheme in Algorithm 1.
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(a) Source Reliability Estimation Accuracy

30 40 50 60 70 80 90 100 110 120
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Number of Sources

Fa
ls

e 
Po

si
tiv

es
 o

f C
la

im
s

CA−EM
Regular−EM
Sums
Average_Log
TruthFinder

(b) Claims Estimation: False Positives
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(c) Claims Estimation: False Negatives
Figure 1. Estimation Accuracy versus Number of Sources

Algorithm 1 Confidence-Aware EM Algorithm
1: Initialize θ (Ti,k = ski , Fi,k = 0.5× ski , d =Random number in (0, 1)
2: while θ(n) does not converge do
3: for j = 1 : N do
4: compute Z(n, j) based on Equation (11)
5: end for
6: θ(n+1) = θ(n)

7: for i = 1 :M do
8: compute T (n+1)

i,k , F
(n+1)
i,k , d(n+1) based on Equation (13)

9: update T (n)
i,k , F

(n)
i,k , d

(n) with T (n+1)
i,k , F

(n+1)
i,k , d(n+1) in θ(n+1)

10: end for
11: n = n+ 1
12: end while
13: Let Zc

j = converged value of Z(n, j)

14: Let T c
i,k = converged value of T

(n)
i,k ; F c

i,k =

converged value of F (n)
i,k ; dc = converged value of d(n)

15: for j = 1 : N do
16: if Zc

j ≥ 0.5 then
17: claim Cj is true
18: else
19: claim Cj is false
20: end if
21: end for
22: for i = 1 :M do
23: calculate tki

∗ from T c
i,k , F c

i,k and dc based on Equation (4)
24: calculate ti∗ form tki

∗ based on Equation (3)
25: end for
26: Return the MLE on source reliability ti∗ and corresponding judgment on

the correctness of claim Cj .

V. EVALUATION

In this section, we carry out experiments to evaluate the
performance of the proposed Confidence-Aware EM scheme
(i.e., CA-EM) through both a simulation study and real world
case studies in social sensing. We compare the CA-EM
scheme with the-state-of-the-art baselines from the literature
and showed that significant performance improvements can be
achieved by the CA-EM scheme compared to the baselines.

A. Simulation Study

We begin our evaluation with an extensive simulation
study of the proposed CA-EM scheme over different problem
dimensions. We implement a simulator in Python 2.7 and
compare the performance of the CA-EM scheme with the
Regular EM in IPSN 12 [36] and other three state-of-the-art

truth estimation schemes: Sums [15], Average Log [21], and
TruthFinder [42]. The simulator generates a random number
of sources and claims. A random probability ti is assigned
to each source Si representing her/his reliability (i.e., the
ground truth probability Si reports claims correctly). For
source Si, Ri reports are generated. Importantly, source Si
may report claim Cj with a certain degree of confidence k,
k = 1, ...,K. We set K = 3 for the first three experiments
and vary the value of K in the last experiment. For K = 3,
we let tHi , tMi and tLi denote the source reliability with a
confidence degree of high, medium and low. They are
set to be uniformly distributed between (0.8,1), (0.5,0.8) and
(0,0.5) respectively. In the evaluation, we compared the CA-
EM with all baselines in terms of the estimation error of source
reliability as well as the false positives and false negatives of
the claim classification. The reported results are averaged over
100 experiments for all compared schemes.

In the first experiment, we compare all schemes by varying
the number of sources in the system. The number of reported
claims was fixed at 2000, of which 1000 claims were true
and 1000 were false. Since the non-EM schemes (i.e., Sums,
Average Log and TruthFinder) need the background prior d
to be known as their input, we give the correct value of d
(i.e., 0.5) to these schemes. The average number of reports
made per source was set to 100. The fraction of reports made
by a source with high, medium and low confidence was set
to be equal (i.e., 1/3 for each). The number of sources was
varied from 30 to 120. Results are shown in Figure 1. We
observe that the CA-EM scheme outperforms all baselines by
reducing both the estimation error on source reliability and
false positives and false negatives on claim classification. We
also note that the performance gain of the CA-EM scheme is
significant as the number of sources changes in the system.

The second experiment compares the CA-EM scheme with
all baselines when the average number of reports per source
changes. We set the number of sources to 30. The average
number of reports per source is varied from 100 to 1000. Other
configurations are kept the same as the previous experiment.
The results are shown in Figure 2. Observe that CA-EM
outperforms all baselines in terms of both source reliability
estimation accuracy and the claim classification accuracy as
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(c) Claims Estimation: False Negatives
Figure 2. Estimation Accuracy versus Average Number of Reports per Source
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Figure 3. Estimation Accuracy versus Fraction of Reports Made with High Confidence
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(c) Claims Estimation: False Negatives
Figure 4. Estimation Accuracy versus Number of Confidence Degrees

the average number of reports per source changes.

In the third experiment, we evaluate the performance of
the CA-EM scheme and other schemes when the fraction of
reports made with high confidence varies. We vary the fraction
of high confidence reports from 0.1 to 0.9. The fractions of
reports made with medium and low confidence were kept
equal. The number of source is set to 30 and the average
number of reports per source is set to 150. Reported results are
shown in Figure 3. Observe that the CA-EM scheme achieves
the best performance as compared to all baselines when the
fraction of high confidence reports changes in the system.

In the last experiment, we evaluate the performance of all
schemes by varying the number of confidence degrees (i.e.,

K) in the system. We vary the value of K from 2 to 6. The
fraction of reports made with different degree of confidence
are kept the same. The mean value of source reliability is
constant over different K values. The average number of
reports made per source is set to 300. Other configurations are
the same as before. Reported results are shown in Figure 4.
We observe that the CA-EM scheme consistently outperforms
all baselines under different values of K. The performance
gain of CA-EM compared to other baselines in the above
experiments are achieved by judiciously exploring different
degrees of confidence a source expresses on her/his claims.

This concludes our general simulations. In the next sub-
section, we will further evaluate the performance of CA-EM



through several real-world case studies in social sensing.

B. Real Word Case Studies

In this subsection, we evaluate the CA-EM scheme using
three real world case studies based on Twitter. Given Twitter
is designed as an open data-sharing platform for average
people, it creates an ideal scenario for unreliable content from
unvetted human sources with various degrees of confidence.
In our evaluation, we compare CA-EM to three representative
baselines from current literature. The first baseline is Voting,
which computes the data credibility simply by counting the
number of times the same tweet is repeated on Twitter.
The second baseline is the Sums, which also considers the
differences in source reliability when it computes the data
credibility scores [15]. The third baseline is the Regular EM,
which was shown to outperform four current truth estimation
schemes in social sensing [36].

In order to evaluate these schemes through real world
case studies, we implemented them inside Apollo. Apollo
was a fact-finding tool the authors have developed to capture
tweets from many events of interest such as terrorist incidents,
hurricanes, riots, civil unrest, and other natural and man-made
disasters [3]. In particular, Apollo has: (i) a data collection
component that allows users to collect tweets by specifying a
set of keywords and/or geo-locations as filtering conditions and
log the collected tweets; (ii) a data pre-processing component
that clusters similar tweets into the same cluster by using
micro-blog data clustering methods [29]. Using the meta-data
output by the data pre-processing component, we generated
the Sensing Matrix SC by taking the Twitter users as the
data sources and the clusters of tweets as the the statements
of user’s observations, hence representing the claims in our
model. The next step is to generate the Confidence Matrix
W . For simplicity, we focus on the binary case here (i.e.,
K = 2). In particular, we use the following simple heuristics
to roughly estimate the degree of confidence a user may
express on a tweet: (i) if the tweet is an original tweet (i.e.,
not a retweet), it is of high confidence. Otherwise it is of
low confidence. The hypothesis for this heuristic is that the
first-hand information is often of higher confidence than the
second-hand one (e.g., retweet). (ii) If the tweet contains a
valid URL to an external source as the supporting evidence,
it is of high confidence. Otherwise it is of low confidence.
The hypothesis is that including external evidence normally
indicates stronger confidence of users. (iii) The combination
of the above two: if the tweet is an original tweet and contains
a valid supporting URL, it is of high confidence. Otherwise, it
is of low confidence. We note that the above heuristics are only
the first approximations to estimate the degree of confidence
a source may express in a tweet. The goal of this section is
to provide a proof-of-concept demonstration of using these
heuristics to estimate the source’s confidence and validating
the CA-EM scheme in real world social sensing applications.
In future, we will explore more comprehensive text analysis
techniques (e.g., natural language processing) to improve the
accuracy of the source confidence estimation from tweets.

For the purposes of evaluation, we select three real world
Twitter data traces of different sizes. The first trace was
collected by Apollo during Boston Marathon bombings that
happened on April 15, 2013 and subsequent shootings and
manhunt events. The second was collected during and shortly
after hurricane Sandy (the second-costliest hurricane in United
States history) from New York and New Jersey in Octo-
ber/November 2012. The third one was collected from Cairo,
Egypt during the violent unrest events that led to the resig-
nation of the former Egyptian government in February 2011.
These traces are summarized in Table I.

Trace Boston
Bombing

Hurricane
Sandy

Egypt Un-
rest

Start Date 4/15/2013 11/2/2012 2/2/2011
Time duration 7 days 14 days 18 days
Physical Location Boston and

its suburbs
New York &
New Jersey

Cairo

# of tweets 123,402 12,931 93,208
# of users tweeted 101,209 7,583 13,836

Table I
DATA STATISTICS OF THREE TRACES

We fed each data trace to the Apollo tool and executed all
the compared truth estimation schemes. The output of these
schemes was manually graded in each case to determine the
credibility of the claims. Due to man-power limitations, we
manually graded only the 100 top ranked claims by each
scheme using the following rubric:
• True claims: Claims that are statements of a physical or

social event, which is generally observable by multiple in-
dependent observers and corroborated by credible sources
external to Twitter (e.g., mainstream news media).

• Unconfirmed claims: Claims that do not sastify the re-
quirement of true claims.

We note that the unconfirmed claims may include the false
claims and some possibly true claims that cannot be inde-
pendently verified by external sources. Hence, our evaluation
provides pessimistic performance bounds on the estimates.
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Figure 5. Evaluation on Boston Bombing Trace

Figure 5 shows the result for the Boston Marathon bombing
trace. We observe that CA-EM schemes generally outperform



the Regular EM scheme and other baselines in providing
more true claims and suppressing the unconfirmed claims.
This is achieved by explicitly incorporating different degree
of confidence a source may express on the reported claims
into the maximum likelihood estimation framework. The per-
formance gains of CA-EM schemes compared to Regular EM
are significant: 15% to 22% depending on the heuristics
we used to generate the Confidence Matrix. It verifies the
validity of using the CA-EM scheme to obtain more credible
information in a real world social sensing application where
sources are unvetted and likely to express various degrees of
confidence about their claims. We also included the reference
point called Raw, which indicates the average percentage of
true claims in a random sample set of raw tweets.
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Figure 6. Evaluation on Hurricane Sandy Trace
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Figure 7. Evaluation on Egypt Unrest Trace

We repeated the above experiments on the Hurricane Sandy
trace and Egypt Unrest trace. The results for Sandy trace are
shown in Figure 6. In Figure 6, we consistently observe that
the CA-EM schemes achieve the best performance compared
to all baselines in increasing the number of true claims.
Similar results are shown for the Egypt trace in Figure 7. The
performance gain of the best performed CA-EM scheme in
this case is even more significant (i.e., identifying 30% more
true claims than the Regular EM).

VI. DISCUSSIONS AND FUTURE WORK

Sources are assumed to be independent in the current
CA-EM scheme. However, dependency may exist between
sources, especially when they are connected through the social
networks. A recent effort has developed an effective model to
address the source dependency in social sensing [34]. Also no
correlations are assumed between claims in our framework.
The claim correlation problem has been studied by the authors
in a separate line of work [33]. Moreover, the aforementioned
solutions on source dependency and claim correlation were
developed under the same analytical framework as the CA-
EM scheme. This allows the authors to quickly develop a
more generalized confidence-aware truth estimation model that
explicitly considers both the source dependency and claim
correlation under a unified framework.

The current confidence estimation heuristics used in the
Apollo system offers many opportunities for future improve-
ment. The RT, URL, RT+URL are only first approximations.
Authors plan to improve them by leveraging more comprehen-
sive techniques (e.g., text mining, natural language processing,
etc.) to estimate source’s confidence from a deeper analysis of
the tweet contents. Some recent efforts provide good insights
into this direction by developing new methods to exploit the
lexicon, syntax and semantics of data from Twitter [10], [30].
Moreover, the confidence estimation module is a plug-in of
the proposed MLE framework, which gives us the flexibility
to substitute it with a more refined one in the future.

The time dimension of the problem deserves more investi-
gation. When the confidence of a source changes with large
dynamics over time, how to best account for it in the MLE
framework? A time-sensitive model is needed to better handle
such dynamics. Recent work in fact-finding literature starts
to develop a new category of streaming EM algorithms that
quickly update the parameters of the maximum likelihood
estimation using a recursive estimation approach [32]. Inspired
by these results, the authors plan to develop similar real-time
features of our CA-EM scheme to better capture the dynamics
in the source’s confidence. One key challenge is to design a
nice tradeoff between estimation accuracy and computation
complexity of the streaming algorithm. The authors are ac-
tively working on accommodating the above extensions.

VII. CONCLUSION

This paper presents a confidence-ware maximum likelihood
estimation framework for explicitly considering source con-
fidence to improve the truth estimation accuracy in social
sensing applications. The approach can jointly estimate both
the reliability of data sources and the credibility of their
claims while exploiting the diversity of source confidence in
their claims. The optimal solution is obtained by solving an
expectation maximization problem where degrees of source
confidence are encoded as link weights in a confidence matrix.
We evaluated the proposed CA-EM scheme through both a
simulation study and three real world case studies in social
sensing. Evaluation results showed significant estimation ac-



curacy improvements can be achieved by the CA-EM scheme
compared to state-of-the-art baselines in the current literature.
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