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Abstract—Social sensing is a new big data application paradigm for Cyber-Physical Systems (CPS), where a group of individuals
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knowledge on either of them. We refer to this problem as truth discovery. While prior studies have made progress on addressing this
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which leads to sub-optimal truth discovery results; (ii) current truth discovery solutions are mostly designed as sequential algorithms
that do not scale well to large-scale social sensing events. In this paper, we develop a Scalable Uncertainty-Aware Truth Discovery
(SUTD) scheme to address the above limitations. The SUTD scheme solves a constraint estimation problem to jointly estimate the
correctness of reported data and the reliability of data sources while explicitly considering the uncertainty on the reported data. To
address the scalability challenge, the SUTD is designed to run a Graphic Processing Unit (GPU) with thousands of cores, which is
shown to run two to three orders of magnitude faster than the sequential truth discovery solutions. In evaluation, we compare our
SUTD scheme to the state-of-the-art solutions using three real world datasets collected from Twitter: Paris Attack, Oregon Shooting,
and Baltimore Riots, all in 2015. The evaluation results show that our new scheme significantly outperforms the baselines in terms of
both truth discovery accuracy and execution time.
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1 INTRODUCTION

THIS paper presents a scalable uncertainty-aware esti-
mation approach to solve the truth discovery problem

in social sensing applications for Cyber-Phyiscal Systems
(CPS). Social sensing has become a new big data application
paradigm for CPS, where a group of individuals volunteer
(or are recruited) to report measurements or observations
about the physical world at scale [56]. Examples of social
sensing applications include traffic monitoring and con-
gestion control applications using data from drivers’ or
passengers’ smartphones, geotagging and smart city ap-
plications using crowdsensing data from common citizens,
and real-time situation awareness applications that report
disaster fallout using online social media. Due to the open
data contribution opportunities and unvetted nature of data
sources (e.g., human sensors), a fundamental challenge in
social sensing applications lies in discovering the correctness
of reported observations and reliability of data sources without
prior knowledge on either of them, which is referred to as truth
discovery problem in social sensing. This work contributes to
addressing the veracity aspect of the big data challenge in
CPS applications.

Consider a disaster scenario like Ecuador Earthquake
(April 2016), where many damages happened in the city and
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people volunteered to report real-time information about
different aspects of the earthquake through online social me-
dia (e.g., Twitter). Such information can be effectively used
to obtain accurate and timely situation awareness of the
disaster and support decision makings on rescuing efforts
and resource dispatch. However, it is challenging to accu-
rately ascertain the correctness of human sensed data with
little or no prior knowledge of the human sensors and the
claims they contribute [66]. For example, users may report
unreliable information on Twitter that could mislead people
to the locations that do not have the desirable resources
(e.g., food, water, gas) [17]. Furthermore, unlike physical
sensors, humans are more likely to generate the claims with
different degrees of uncertainty (e.g., affirmative assertions
versus pure guesses), which add further complexity to the
truth discovery problem [30].

Prior studies in sensor networks [36], [60], [63], data
mining [12], [66], and machine learning communities [26],
[40] have made a significant progress to address the truth
discovery problem in social sensing. Despite such progress,
two important limitations exist. First, current solutions
did not fully explore the uncertainty aspect of the claims
generated by human sensors and assumed all claims are
affirmative. However, such assumption does not hold in
real world social sensing applications. For example, dur-
ing Oregon Shooting and Baltimore Riots events in 2015,
people reported on Twitter their claims that are of different
degrees of uncertainty in relation to the events (see Table 1).
Simply ignoring such difference in uncertainty of claims are
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Events Tweet Uncertainty Degree
Oregon Shooting ”There’s a shooter! Run! Run! Get out of there!” #

OregonShooting
Low Uncertainty

Oregon Shooting UNCOFIRMED: The Oregon school shooting may have
been urged to action by 4chan members.

High Uncertainty

Baltimore Riots 5 things to know about Baltimore Mayor Stephanie
Rawlings-Blake http://t.co/eniQSyXR9L

Low Uncertainty

Baltimore Riots RT @JesusKreish: Baltimores throwin riots because this
guy died?

High Uncertainty

Table 1: Claims of Different Degrees of Uncertainty in Real World Events

shown to lead to suboptimal truth discovery results [60],
[63]. Second, current truth discovery solutions are mostly
designed as sequential algorithms that cannot easily run
on parallel computing platforms (e.g., cloud, GPU). Such
scalability deficiency greatly limits the application of current
truth discovery solutions in large-scale social sensing events.

A few technical challenges exist in order to address the
above limitations of the truth discovery solutions. First,
it is challenging to model and quantify the degrees of
uncertainty human sensors express in their claims and in-
corporate such uncertainty feature into a rigorous truth dis-
covery solution. Second, it is not a simple task to rigorously
quantify the accuracy of the truth discovery results with the
absence of the ground truth information on either source
reliability or claim correctness. Third, it is nontrivial to
design a parallel truth discovery solution that can run much
faster than its sequential counterpart without sacrificing the
truth discovery accuracy.

To address the above challenges, this paper develops a
Scalable Uncertainty-Aware Truth Discovery (SUTD) scheme
(Figure 1). The SUTD scheme solves a constraint estimation
problem to jointly estimate the correctness of reported data
and the reliability of data sources while explicitly explor-
ing the uncertainty feature of claims. Rigorous confidence
bounds have been derived to assess the quality of the truth
discovery results output by SUTD scheme using the well-
grounded results from estimation theory. We also designed
a parallel paradigm of SUTD that runs a Graphic Processing
Unit (GPU) with 2496 cores, which is shown to run two to
three orders of magnitude faster than the sequential truth
discovery solutions without degrading the performance in
the estimation accuracy. In evaluation, we compare our
SUTD scheme with state-of-the-art discovery solutions us-
ing three Twitter datasets collected during recent events:
Paris Attack event, Oregon Shooting event and Baltimore
Riots, all in 2015. The evaluation results demonstrate that
our new scheme significantly improves both truth discovery
accuracy and execution time compared to the baselines.
In this paper, we primarily focus on the disaster and
emergency response scenarios since the amount of factual
and verifiable information is more significant compared
to other social events (e.g., presidential election, protests).
However, the authors discuss the limitation and possible
generalization of our proposed model to better handle social
events in Section 7. The results of this paper address two
fundamental challenges in social sensing (i.e., uncertainty of
claims and scalability of the solution), which provide a solid
basis for future truth discovery solutions using principled
approaches.

We summarized the contributions of this paper as fol-

lows:

• We explicitly address the uncertainty and scalability
challenges of the truth discovery problem in social
sensing. (Section 2)

• We developed a new analytical framework SUTD
that solves the uncertainty-aware truth discovery
problem using a principled approach in the context
of big data social sensing applications. (Section 3)

• We implemented a parallel SUTD scheme on a GPU
that was shown to run a few orders of magnitude
faster than the sequential truth discovery solutions.
(Section 4)

• We evaluated the performance of the SUTD scheme
using three real world datasets collected from recent
events. The evaluation results demonstrate the sig-
nificant performance gain achieved by our scheme
compared to other baselines. (Section 5)

An initial version of this work has been published in [61].
This work significantly expands on our previous work and
makes new contributions from the following aspects. First,
we extended our previous proposed model in [61] by de-
veloping new confidence bounds to rigorously assess the
quality of the truth discovery results (Section 3). Second,
we developed a scalable framework SUTD to implement
our proposed scheme on a parallel platform (i.e., GPU),
which can efficiently handle big data and is more suitable
for large-scale social sensing events in big data applications
(Section 4). Third, we compared our scheme with more
recent truth discovery solutions from CPS literature and car-
ried out a more comprehensive evaluation and comparison
between the SUTD scheme and the state-of-the-art baselines
(Section 5). Fourth, we performed a set of experiments
on three new datasets collected from recent events (i.e.,
Paris attack, Oregon shooting and Baltimore riots in 2015)
and further evaluated the robustness and efficiency of our
scheme in these real world scenarios (Section 5). Finally,
we extended our related work with specific discussion on
Cyber-Physical Systems and discussed the fitness of our
work into the scope of the special issue (Section 6).

2 PROBLEM STATEMENT AND DISTINCTION

2.1 Problem Statement

In this section, we introduce the uncertainty-aware truth dis-
covery problem in social sensing as a constraint estimation
problem. Specifically, let us consider a set of M sources,
namely, S1, S2,...,SM . The sources generate a collection of
N claims about the physical world, namely, C1, C2,..,CN . In
this paper, we focus on binary claims. This is motivated by
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Figure 1: Overview of the SUTD Scheme

the observation that the states of the physical environment
in many social sensing applications can be abstracted by a
set of true or false statements. For example, in a geotagging
application to find potholes on city streets, each possible
location is associated with one claim that is true if a pothole
presents at that location and false otherwise. Without loss of
generality, we assume sources report only when a positive
value is encountered (e.g., sources only report when she/he
observes a pothole on streets). Let Si represent the ith source
and Cj represent the jth claim. Cj = 1 if it is true and
Cj = 0 if it is false. Additionally, we introduce the definition
of a Sensing Matrix SC where SiCj = 1 indicates that Si
reports Cj to be true, and SiCj = 0 otherwise.

In this paper, the uncertainty is defined as the degree of
confidence (certainty) a source expresses in his/her report to
a claim. In particular, we define an Uncertainty Matrix W ,
where the element wi,j denotes the degree of uncertainty
source Si expressed on claim Cj . We define the value of
wi,j to be a discrete variable k, where k ∈ [1,K] and K
is the total number of degrees of uncertainty. In particular,
wij = k denotes that Si reports the claim Cj to be true with
a uncertainty degree of k, where k = 1, ...,K . The uncer-
tainty degree k that a source expresses in its reports can be
extracted from social sensing data using both syntactic (e.g.,
RT tag and URL of a tweet) and semantic features (uncertain
words, replies from other users) of the claims. The details
of the uncertainty degree computation are explained in
Section 5.

In our model, we denote the reliability of source i as ti.
It indicates the likelihood that a claim is true if the source Si
reports it. In particular, ti is given by:

ti = P (Cj = 1|SiCj = 1) (1)

Note that ti is the overall reliability of a source Si that
incorporates all possible uncertainty degrees of Si towards
the claims he/she makes. It is not defined for a claim at a
particular time instant.

Considering the fact that source Si might have different
reliability when it reports claims with different degrees of

uncertainty [2], we define tki as the reliability of source Si
when it reports a claim with an uncertainty degree of k
(where k = 1, ...,K). Formally, tki is given by:

tki = P (Cj = 1|SiCj = 1, wij = k) (2)

Therefore,

ti =
K∑
k=1

tki ×
ski
si

k = 1, ...,K (3)

where ski is the probability that Si reports Cj with a
uncertainty degree of k. In particular, ski can be com-
puted based on the Uncertainty Matrix. Additionally, we
denote the probability that Si contributes a claim by si
(si = P (SiCj = 1)). Note that si = ΣKk=1s

k
i .

We further define Ti,k and Fi,k to be the probability that
source Si reports claim Cj to be true with a uncertainty
degree of k, given that the Cj is indeed true and false, re-
spectively. In particular, Ti,k and Fi,k are defined as follows:

Ti,k = P (SiCj = 1, wij = k|Cj = 1)

Fi,k = P (SiCj = 1, wij = k|Cj = 0) (4)

Following the Baye’s theorem, relation between Ti,k, Fi,k
and tki , ski can be derived as follows:

Ti,k =
tki × ski
d

Fi,k =
(1− tki )× ski

1− d
(5)

where d is the probability that a randomly chosen claim is
true, which is part of our estimation parameter defined in
Section 3.

For completeness, we also define Ti = P (SiCj = 1|Cj =
1) and Fi = P (SiCj = 1|Cj = 0) to represent the overall
probability that source Si reports a claim to be true given
the claim is true and false, respectively. The relationship
between Ti, Fi and Ti,k, Fi,k are as follows.

Ti = ΣKk=1T
k
i ×

ski
si

Fi = ΣKk=1F
k
i ×

ski
si

(6)
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Therefore, the uncertainty-aware truth discovery prob-
lem in social sensing can be presented as a constraint
estimation problem: given the input as the Sensing Matrix
SC and Uncertainty Matrix W , the objective is to estimate
the correctness of all claims and and the reliability of all
sources. Formally, we compute:

∀j, 1 ≤ j ≤ N : P (Cj = 1|SC,W )

∀i, 1 ≤ i ≤M : P (Cj = 1|SiCj = 1) (7)

2.2 Distinction from Previous Models
Before we present the SUTD scheme, we first highlight the
difference between our model and a few closely related
models from CPS and networked sensing literature [17],
[36], [58], [60], [63].

Four recent models in truth discovery are most similar
to our model: IPSN 12, RTSS 13, IPSN 14 and IPSN 16
model (shown in Figure 2). First, the IPSN 12 model is the
seminal work that formulated the truth discovery problem
as a network estimation problem [63]. Second, the RTSS
13 model extended the IPSN 12 model by considering the
dependencies between claims. Both IPSN 14 and IPSN 16
considered the source dependence in the truth discovery
problem. The difference between them are: the IPSN 14
simplified the source dependency graph as a set of two-
level disjoint trees [60] while IPSN 16 developed a more
generalized model to consider arbitrary source dependency
graph (e.g., including multi-hop and cyclic dependency
relationship) [17]. Moreover, the IPSN 16 also explicitly
models the topic relevance feature of the claims. However,
none of the above models studied the uncertainty aspect of
the claims and the scalability of their schemes to large-scale
social sensing events. In sharp contrast to previous work,
this paper explicitly incorporates the uncertainty on the
reported data and develops a parallel truth discovery solution to
address the scalability problem. As shown in Figure 2, our
model includes a set of variables to represent the uncertainty
embedded in the claims and can run in parallel on a set of
distributed nodes. The details of our SUTD schemed are
presented in the following section.

3 AN UNCERTAINTY-AWARE TRUTH DISCOVERY
(UTD) SCHEME

In this section, we developed an UTD scheme using
the Expectation-Maximization (EM) algorithm to solve the
Uncertainty-Aware Truth Discovery problem. We also com-
pute the Cramer-Rao Lower Bounds (CRLBs) to quantify
the estimation accuracy of UTD scheme. In the next section,
we extend the UTD scheme to SUTD scheme to address the
scalablity challenge.

3.1 Background and Mathematical Formulation
We develop an uncertainty-aware Expectation Maximiza-
tion (EM) to solve the constraint optimization problem
formulated in the previous section. For the constraint es-
timation problem formulated in Section 2, the data we
observed is Sensing Matrix SC and the Uncertainty Ma-
trix W . The estimation parameter of our model is θ =
(T1,k, T2,k, ..., TM,k;F1,k, F2,k, ..., FM,k; d) and k = 1, 2, ..K.

Ti,k and Fi,k are defined in Equation (4) and d is the
prior probability of a randomly chosen claim to be true.
Furthermore, we introduce a vector of latent variables Z
to represent the truthfulness of each claim. In particular, a
variable zj is defined for the jth claimCj : zj = 1 ifCj is true
and zj = 0 otherwise. Additionally, in order to incorporate
different degrees of uncertainty a source may express on
her/his claims into the estimation problem, we define a
set of binary variables wkij such that wkij = 1 if wij = k
in Uncertainty Matrix W and wkij = 0 otherwise. The
likelihood function of the uncertainty-aware truth discovery
problem is as follows:

L(θ;X,Z) = Pr(X,Z|θ)

=
Y∏
j=1

Pr(zj |Xj , θ)×
X∏
i=1

K∏
k=1

λi,j,k × Pr(zj) (8)

where SiCj = 1 when source Si reports Cj to be true and 0
otherwise. Additional variables are defined in Table 2.

Table 2: Notations for UTD Scheme

λi,j,k Pr(zj) Z(n, j) Constrains

Ti,k d Pr(Zj = 1|Xj , θ
(n)) SiCj = 1, wk

i,j = 1, zj = 1

1−
∑K

k=1 Ti,k d Pr(Zj = 1|Xj , θ
(n)) SiCj = 0, wk

i,j = 1, zj = 1

Fx,k 1− d Pr(Zj = 0|Xj , θ
(n)) SiCj = 1, wk

i,j = 1, zj = 0

1−
∑K

k=1 Fi,k 1− d Pr(Zj = 0|Xj , θ
(n)) SiCj = 0, wk

i,j = 1, zj = 0

3.2 UTD Scheme
Using the likelihood function, we derive the E-step as fol-
lows:

Q(θ|θ(n)) = RZ|X,θ(n) [logL(θ;X,Z)]

=
N∑
j=1

Z(n, j)×
M∑
i=1

(logλi,j,k + logPr(zj)) (9)

We then define Z(n, j) = p(zj = 1|Xj , θ
(n)). It is the prob-

ability that a particular claim Cj is true given the observed
data and current estimates of the parameters. Z(n, j) can be
further expanded as:

Z(n, j) =
p(zj = 1;Xj , θ

(n))

p(Xj , θ(n))

=
T (n, j)× d(n)

T (n, j)× d(n) + F (n, j)× (1− d(n))
(10)

where n is the iteration index. T (n, j) and F (n, j) are
defined as follows:

T (n, j) = p(Xj , θ
(n)|zj = 1)

=
M∏
i=1

K∏
k=1

(T
(n)
i,k )SiCj && wk

ij × (1−
K∑
k=1

(T
(n)
i,k )1−SiCj )

F (n, j) = p(Xj , θ
(n)|zj = 0)

=
M∏
i=1

K∏
k=1

(F
(n)
i,k )SiCj && wk

ij × (1−
K∑
k=1

(F
(n)
i,k )1−SiCj ) (11)

The Maximization step (M-step) is given by θ(n+1) =
arg maxθ Q(θ|θ(n)). In the M-step, we select θ∗ (i.e.,
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T1,k, ..., TM,k, F1,k, ..., FM,k,d) that maximizes the Q(θ|θ(n))
function in each iteration to be the θ(n+1) of the next
iteration.

To get θ∗ that maximize Q(θ|θ(n)), we solve ∂Q
∂Ti,k

= 0,
∂Q
∂Fi,k

= 0 and ∂Q
∂d = 0 and get:

N∑
j=1

[
Z(n, j)×

(
(SiCj && wkij) ·

1

T ∗i,k

− (1− SiCj)
1

1− ΣKh=1,h 6=kTi,h

)]
N∑
j=1

[
Z(n, j)×

(
(SiCj && wkij) ·

1

F ∗i,k

− (1− SiCj)
1

1− ΣKh=1,h 6=kFi,h

)]
N∑
j=1

[
Z(n, j) · 1

d∗
− (1− Z(n, j)) · 1

1− d∗
]

(12)

Solving the above equations, we can obtain optimal T ∗i,k,
F ∗i,k and d∗ are as follows:

T
(n+1)
i,k = T ∗i,k =

Σj∈SWk
i
Z(n, j)

ΣNj=1Z(n, j)

F
(n+1)
i,k = F ∗i,k =

Σj∈SWk
i

(1− Z(n, j))

N − ΣNj=1Z(n, j)

d(n+1) = d∗ =
ΣNj=1Z(n, j)

N
(13)

where N represents the size of the claim set and SW k
i

represents the subset of claims that source Si reports with
the uncertainty degree of k. The UTD scheme is shown in
Figure 3. Additionally, we summarize the UTD scheme in
Algorithm 1.

3.3 Confidence Bounds of UTD Estimation
In this subsection, we present the derivation of the confi-
dence bounds of the estimation results of the UTD scheme.

Ti,k d Z j

S C

SiCj

ti,k
W

Fi,k

SW k
i

M − Step

E − Step

Figure 3: Probability Graphical Model of UTD

The confidences bounds are derived based on Cramer-
Rao Lower Bounds (CRLB) of the estimations. Cramer-Rao
Lower Bounds (CRLB) are the lowest bounds that can be
reached by an unbiased estimator. It is defined as follows:

CRLB = J−1 (14)

where J represents the Fisher information, which is a
way of measuring the uncertainty (i.e., variance) on the
estimation parameters of the model given the observed
measurements [38].

Using the likelihood function defined in Equation (8), we
can calculate the Fisher Information Matrix as follows:

(J(θ̂est))i,j

=



0 i 6= j

− EX [
1

∂2lsutd(x;Ti,k)

∂T 2
i,k

|Ti,k=T̂ est
i,k

] i = j ∈ [1,M ]

− EX [
1

∂2lsutd(x;Fi,k)

∂F 2
i,k

|Fi,k=F̂ est
i,k

] i = j ∈ (M, 2M ]

(15)
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Algorithm 1 UTD Algorithm

1: Initialize θ (Ti,k = ski , Fi,k = 0.5 × ski , d =Random
number in (0, 1))

2: while θ(n) does not converge do
3: for j = 1 : N do
4: compute Z(n, j) based on Equation (10)
5: end for
6: θ(n+1) = θ(n)

7: for i = 1 : M do
8: compute T

(n+1)
i,k , F

(n+1)
i,k , d(n+1) based on Equa-

tion (13)
9: update T (n)

i,k , F
(n)
i,k , d

(n) with T
(n+1)
i,k , F

(n+1)
i,k , d(n+1)

in θ(n+1)

10: end for
11: n = n+ 1
12: end while
13: Let Zcj = converged value of Z(n, j)

14: Let T ci,k = converged value of T
(n)
i,k ; F ci,k =

converged value of F (n)
i,k ; dc = converged value of d(n)

15: for j = 1 : N do
16: if Zcj ≥ threshold value then
17: claim Cj is true
18: else
19: claim Cj is false
20: end if
21: end for
22: for i = 1 : M do
23: calculate tki

∗
from T ci,k, F ci,k and dc based on Equa-

tion (4)
24: calculate ti∗ form tki

∗
based on Equation (3)

25: end for
26: Return the estimation on source reliability ti∗ and corre-

sponding judgment on the correctness of claim Cj .

where T̂ esti,k and F̂ esti,k are the converged values of estimation
parameters derived in Equation (13). We can then obtain
the CRLBs of our model by simply taking the inverse of the
above Fisher information matrix.

Using the CRLB derived above, we can easily compute
the derive confidence bounds of the estimation parame-
ters [62]. In particular, the confidence bounds of Ti, Fi and
ti are computed as:

(t̂esti − cp
√
var(t̂i

est
), t̂i

est
+ cp

√
var(t̂i

est
)) (16)

where var(T̂i
est

) and var(F̂i
est

) are the variance of the
estimation parameters, which can be directly computed
from the CRLBs in Equation (??). cp represents the standard
score for confidence level p.

4 SCALABLE UNCERTAINTY-AWARE TRUTH DIS-
COVERY (SUTD) SCHEME

To address the scalability limitation of current truth discov-
ery solutions, we develop a parallel implementation of the
UTD scheme on a Graphic Processing Unit (GPU) using the
Compute Unified Device Architecture (CUDA) program-
ming model [35]. We refer to this parallel implementation
of UTD as the Scalable Uncertainty-Aware Truth Discovery

(SUTD) scheme. GPU has emerged as a new computing plat-
form for many computational intensive applications. CUDA
is a parallel programming model invented by NVIDIA. In
CUDA, a kernel is defined as a grid of thread blocks and a
thread of execution is the smallest unit in the parallelization.
In the parallelization process, each node (called a thread
node) will take care of a part of the whole computation task
and users need to specify a set of kernels to parallelize the
computation task.

Several challenges exist in order to implement SUTD:
(i) the memory of Graphics Card is limited, so we need to
design efficient strategies to handle the large-scale datasets
on GPU; (ii) we need to design a mechanism to distribute
the computation task of various estimation parameters and
hidden variables of SUTD to different threads in an efficient
way. To address these challenges, we designed the SUTD
based on the estimation model developed in this paper
and optimized our implementation using the following
techniques: (i) we set the variables used in each thread as
local variables instead of global variables given the fact
that it costs more time to access global memory than local
memory; (ii) we replaced the original conditional branch in
the SUTD algorithm with a direct index in corresponding
arrays, which allows us to save the waiting time of threads
during the branch execution. The above optimization leads
to significant execution time improvement achieved by
SUTD as shown in the next section.

Algorithm 2 SUTD Algorithm
Input: Sensing Matrix Matrix SC, Uncertainty Matrix W
Output: Estimations of Source’s Reliability and Claim’s
Correctness

1: Initialize θ (Ti,k = rki , Fi,k = 0.5 × rki , d =Random
number in (0, 1))

2: n = 0
3: repeat
4: n = n+ 1
5: CUDA Kernel of E-Step:
6: for Each j ∈ C do
7: computation of j → one thread
8: compute Pr(zj = 1|Xj , θ

(n))
9: end for

10: CUDA Kernel of M-Step:
11: for Each i ∈ S do
12: computation of i→ one thread
13: compute (Ti,k)(n), (Fi,k)(n), (d)(n)

14: end for
15: until θ(n) and θ(n−1) converge
16: The decision process is the same as the SUTD in Algo-

rithm 1.

The main idea of SUTD is illustrated in Figure 4. Two
key steps are designed to implement the SUTD: (1) we set
up two different kernels, one for the E-step and the other
for the M-step. (2) We allocate the computation tasks of E
and M steps to different thread nodes. The independence
of hidden variables and estimation parameters make the
division of computational tasks and parallelization possi-
ble. Specifically, in the kernel of E-step, we distribute the
computation task of hidden variables (i.e., Zj) to N thread
nodes. In the kernel of M-step, we distribute the computa-
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Figure 4: SUTD Scheme

tion task of estimation parameters (i.e., Ti,k, Fi,k and d) to
2M ×K+1 thread nodes. We summarize the SUTD scheme
in Algorithm 2.

5 REAL WORLD CASE STUDIES

In this section, we evaluate the performance of the proposed
SUTD scheme using three real-world data traces collected
from Twitter. Twitter is an open data-sharing platform for
average people and creates an ideal scenario for unreliable
content from unvetted human sources with various degrees
of uncertainty.

In our evaluation, we use the following truth discovery
solutions as our baselines:

• IPSN12 [63]: it solves the truth discovery problem
using an iterative principle based on a maximum
likelihood estimation framework.

• IPSN14 [60]: it extended the IPSN 12 model by con-
sidering the dependencies between sources.

• IPSN16 [17]: it extended the IPSN 14 model by
considering the arbitrary source dependency and
relevance of the claims to a given topic.

• RTSS13 [58]: it addressed the truth discovery prob-
lem by exploring the dependency between claims.

• HITS [26]: it assumes that the relationship between
source trustworthiness and claim’s credibility is lin-
ear.

• Majority Voting (MV): it simply assumes that a claim
is more likely to be true if more sources report that
claim.

Additionally, we also included the reference point
called Raw, which represents the average percentage of true
claims in a random sample set of raw tweets.

We have implemented the above schemes in the Apollo
system, which is an information distillation framework the
authors have developed to test truth discovery solutions

in social sensing applications [60]. In particular, Apollo has
two pre-processing components:

• Data Collection Component: it provides the interface
for users to collect tweets using either keywords or
geolocations based on the Twitter’ search API.

• Data Pre-processing Component: it clusters tweets base
on their contents using a variant of K-means cluster-
ing algorithm based on the Jaccard distance [47]. In
particular, the Jaccard distance measures the overlap
of keywords between any pair of compared tweets:
the more overlapped keywords two tweets have, the
shorter Jaccard distance they have.

We generated the the Sensing Matrix SC from the results
of the data pre-processing steps. In particular, the sources
are the Twitter users and the claims are the clusters of tweets
that represent the collective observations from the social
sensors.

The next step is to generate the Uncertainty MatrixW . In
this paper, we focus on the binary case of claim uncertainty
(i.e., K = 2). In particular, we use the following simple
heuristics to roughly estimate the degree of uncertainty
a user may express on a tweet. First, if the tweet is an
original tweet (i.e., not a retweet) and contains a valid URL
to an external source as the supporting evidence, it is of
low uncertainty. Otherwise, it is of high uncertainty. The
hypothesis of this heuristic is mainly twofold: (i) the first-
hand information is often of lower uncertainty than the
second-hand (e.g., retweet); (ii) including external evidence
normally indicates stronger certainty of users. We call the
first heuristic as Syntactic as it only uses the syntactic
information of the tweets (e.g., RT tag or URL). Second,
f the tweet does not contain any uncertain words and
symbols (e.g., may, might and “?”), it is of low uncertainty.
Otherwise, it is of high uncertainty. The hypothesis of this
heuristic is that including uncertain words in the tweets
normally indicates higher degree of uncertainty from users.
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Data Trace Paris Attack Event Oregon Shooting Event Baltimore Riots Event
Starting Date 11/13/2015 10/1/2015 4/14/2015
Duration of Trace Eleven Days Six Days Seven Days
Physical Location Paris, France Umpqua, Oregon Baltimore, Maryland
Search Keywords Paris, Attacks, ISIS Oregon, Shooting, Umpqua Baltimore, Riots
Number of Tweets 873,760 210,028 952,442
Number of Users Tweeted 496,753 122,069 425,552

Table 3: Data Statistics of Three Traces

We refer to the second heuristic as Semantic as it considers
the semantic information of tweets. Lastly, we consider the
combination of the above two: if the tweet is an original
tweet and contains a valid supporting URL as well as it
does not contain any uncertain words, it is of low uncer-
tainty. Otherwise, it is of high uncertainty. We refer to the
third heuristic as Syntactic+Semantic. Note that the above
heuristics are only approximations to estimate the degree
of uncertainty a source may express on a tweet. In future,
we will investigate deeper text analysis techniques (e.g.,
natural language processing) and study its impact on the
claim uncertainty estimation.

In our evaluation, we select three real world Twitter
data traces of recent events. The first trace collected tweets
about Paris Attack in Nov, 2015. The second trace collected
tweets about the Oregon Shooting that happened in Oct,
2015. The third one was collected from Baltimore Riots in
April 2015. The reason for selecting those three data traces
from disaster scenario is: those data traces contain more
factual observations and their correctness can be verified
from external resources. These traces are summarized in
Table 3.

We fed each data trace to the Apollo system and exe-
cuted all the compared truth discovery schemes. We man-
ually graded the output of these schemes to determine
the correctness of the claims. Considering the man-power
limitations, we took the union of the top 50 claims returned
by different schemes as our evaluation set. The following
rubric is used to collect the ground truth labels for our
evaluation:

• True claims: Claims that are statements of an event,
which is generally observable by multiple indepen-
dent sources and can be corroborated by credible
sources external to Twitter (e.g., mainstream news
media).

• Undecided claims: Claims that do not meet the criteria
of true claims.

We note that undecided claims can potentially consist of
two types of claims: (i) true claims that cannot be indepen-
dently verified by external sources; (ii) false claims. Thus,
our evaluation actually provides pessimistic performance
bounds on estimations by treating undecided claims as false.

Also note that SUTD scheme is an parallel implementa-
tion of UTD scheme. We demonstrate in Section 4 that the
parallelization implementation will not miss any informa-
tion from the input data. In the following discussion, we
just present the performance results of the SUTD scheme.

We first present performance results of SUTD scheme on
Paris Attack data trace in Figure 5. The SUTD-Syn, SUTD-
Sem, and SUTD-Syn+Sem represent the SUTD scheme that
uses Syntactic heuristic, Semantic heuristic or both of them
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Figure 5: Evaluation on Paris Attack Trace
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Figure 6: Evaluation on Oregon Shooting Trace

to infer the degree of uncertainty on claims. We observe
that SUTD schemes generally outperform the compared
baselines in most of the evaluation metrics: it discovers
the most number of true claims while keeping the falsely
reported one the least. Specifically, the largest performance
gain is achieved by SUTD-Syn. The performance gain is 20%
and 14% on accuracy and F1 score compared to the best
performed baselines. The performance results on Oregon
Shooting data trace are shown in Figure 6. The SUTD
schemes continues to outperform all the baselines. The
performance gain achieved by SUTD-Syn+Sem compared to
the best performed baseline is 11% and 13% on accuracy and
F1 score respectively. The results on Baltimore Riots data
trace are shown in Figure 7. The results are consistent with
previous experiments. The results on three real world data
traces demonstrate that the SUTD schemes effectively iden-
tify truthful information in real-world applications where
sources are unvetted and likely to express various degrees
of uncertainty on their claims.

We would also like to understand whether the top truth-
ful claims found by different algorithms actually capture
the critical events that are newsworthy and reported by
media. In particular, we independently collected 10 impor-
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# Media Claim from SUTD Claim from the Best Baseline
1 Gunman kills 9 at Oregon college, dies

in shootout with police
Obama News Gunman kills nine
at Oregon college, dies in shootout
with police: By Courtney Sherwo...
http://t.co/oOXSyh9OA0

MISSING

2 Oregon shooting: Gunman dead after
college rampage

#cnn: Oregon shooting: Gunman
dead at Umpqua Community College
http://t.co/Ig3bbWYzFm #news

Oregon shooting: Gunman
dead at Umpqua Community
College #Umpqua #dead
http://t.co/mf7D0dciEr

3 Witnesses Describe Chaotic Scene of
Umpqua Community College Shoot-
ing

ABC Witnesses describe chaotic scene
of shooting at Oregon college

RT @ABC: Witnesses describe chaotic
scene of shooting at Oregon college:
http://t.co/cdQhHgKlXO

4 Traumatized survivors tell of ’ut-
ter panic’ during college shooting
as heroic teachers evacuated students
and others hid inside their classrooms

Umpqua Community College sur-
vivors tell stories from inside the
shooting in Oregon: In the latest mass
killing...

MISSING

5 Three pistols and a long rifle - were
recovered from the scene.

RT @cnnbrk: Official: Three pistols
and one rifle recovered at scene of
Oregon shooting.

RT @cnnbrk: Official: Three pistols
and one rifle recovered at scene of
Oregon shooting.

6 10 killed, 7 injured at Oregon college
shooting, officials say.

10 Killed in Shooting at Oregon Com-
munity College: Seven other people
were injured and the gunman was n̈...
http://t.co/Wo1SJ6nl2W #news

RT @washingtonpost: Authorities con-
firm that 10 people were killed and
seven others injured in the Oregon
community college shooting

7 The gunman, identified by law en-
forcement as Chris Harper Mercer, 26,
died in a gunfight with officers.

@CNN: Sources: Gunman at Oregon
community college was 26-year-old
Chris Harper Mercer.

MISSING

8 Oregon Sheriff Handling Massacre
Fought the White House on Gun Con-
trol After Newtown

RT @YahooNews: Sheriff in #UCC-
Shooting case fought the White House
on gun control after Newtown mas-
sacre http://t.co/Y6Rrq8MaHm

RT @YahooNews: Sheriff in #UCC-
Shooting case fought the White House
on gun control after Newtown mas-
sacre http://t.co/Y6Rrq8MaHm

9 President Obama blames Congress for
inaction on gun laws.

RT @nytimes: President Obama
blames Congress for inaction on gun
laws http://t.co/wn4ehMaMAU.

RT @nytimes: President Obama
blames Congress for inaction on gun
laws http://t.co/wn4ehMaMAU.

10 4chan thread under federal investiga-
tion after Oregon college shooting

4chan thread under federal investi-
gation after Oregon college shooting
http://t.co/ZfqLIGAOfz

4chan thread under federal investi-
gation after Oregon college shooting
http://t.co/1Rcgn8zOR1

Table 4: Ground truth events and related claims found by SUTD vs Best Performed Baselines in Oregon Shooting
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Figure 7: Evaluation on Baltimore Riots Trace

tant events covered by mainstream news media (e.g., CNN,
BBC) during the Oregon Shooting event and used them as
ground truths. After that we searched the top 50 ranked
claims for each of the compared schemes to identify these
events. We present the comparison results of the SUTD and
the best performed baseline in Table 4. We observe that all
ten milestone events are identified in the top claims returned
by the SUTD scheme, while three of them are missing from
the top claims returned from the best performed baseline.
We repeated the same experiments on Paris Attacks and
Baltimore Riots events and the results are similar: SUTD
scheme found 8 milestone events in the case of Paris Attacks
and 9 in Baltimore Riots compared to 6 and 7 by the best
performed baseline.

Finally, we evaluate the efficiency of the parallel im-
plementation of SUTD scheme discussed in Section 4. We
implement SUTD on a computer with Nvidia GeFore GPU
(2496 cores and 1.25 GHZ for each core, 4GB memory). We
compare the SUTD with all baselines. We run the baselines
on a regular lab computer (4 cores and 2 GHZ for each core,
8GB memory). Table 5 presents the execution time required
by all algorithms on three data traces. We observe that
the SUTD scheme runs several orders of magnitude faster
than the compared baselines. The efficiency of SUTD is
achieved by judiciously leveraging the computation power
from thousands of cores on the GPU.

6 RELATED WORK

Reliability is one of the fundamental challenges in Cyber-
Physical Systems (CPS). Prior works in CPS have made
significant advances to address the reliability challenge in
time and functional dimensions [3], [9], [10], [28], [29],
[34], [37], [39], [48], [51], [53], [65]. For the time reliability,
there exist a rich amount of literature on designing vari-
ous scheduling policies and utilization bounds in real time
community [49]. For example, Liu et al. developed a set
of basic utilization bounds for periodic tasks [29]. Many
follow-up works extend the basic bounds by considering
run-time [39], fault-tolerance [37], and multi-frame periodic
models [34]. Utilization bounds have also been derived for
aperiodic tasks [28], [51], [53]. For the functional reliability, it
mainly focuses on correctness of program logic and system
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Table 5: Execution Time Comparison (Seconds)

Algorithms Paris Attack (s) Oregon Shooting (s) Baltimore Riots (s)
SUTD-Syn+Sem 0.21 0.19 0.19

SUTD-Syn 0.25 0.19 0.19
SUTD-Sem 0.19 0.18 0.19

IPSN16 572.42 437.38 217.10
IPSN14 620.15 400.34 221.23
RTSS13 71.06 54.76 47.42
IPSN12 63.83 42.73 51.49
HITS 13.81 9.41 10.01
MV 0.57 0.51 0.50

modeling [44], [50]. For example, Cook et al. developed
useful tools for program analysis and software verification
in cyber-physical and hybrid systems [9], [10]. Alur et al.
and Saeeloei et al. developed formalism based methods to
study the correctness of models in CPS [3], [48]. In contrast,
this paper studies the data reliability challenge, which is
motivated by the CPS applications with human-in-the-loop,
especially the applications that use human as sensors.

Social sensing has emerged as a new application
paradigm in CPS and smart cities [1], [2], [24], [31],
[32], [33], [55]. The ideas of having humans involved in
the process of sensing (e.g., participatory [6], [18], [22],
opportunistic [27], [67] and human-centric [14], [20], [23]
sensing) have been extensively studied in projects such as
MetroSense [7], Urban Sensing [11] and SurroundSense [4].
The idea of using humans as sensors themselves came more
recently [52]. For example, human sensors can contribute
their observations through “sensing campaigns” [45], [46]
or social data scavenging [21], [68]. A survey of social sens-
ing [2] covers many challenges of using humans as sensors
such as privacy perseverance [5], incentives design [25],
and social interaction promotions [42], [43]. However, truth
discovery remains to be a critical research question in social
sensing. In this paper, we developed a new SUTD scheme
to solve the uncertainty-aware truth discovery problem.

Fact-finders are a set of techniques developed in data
mining and machine learning community to assess the qual-
ity of aggregated information from unreliable data sources.
Hubs and Authorities [26] is one of the early fact-finders
that computes the source and claim credibility in an iterative
fashion. More fact-finding schemes have been developed to
improve the basic frameworks by using probabilistic mod-
els [66], incorporating analysis on properties of claims [40]
and dependency between sources [12]. More recent fact-
finding algorithms address additional complexities such
as prior knowledge on sources and claims [16], [19], [41]
and the semantic features of claims [32], [59], [64]. In this
paper, we will use insights from fact-finders and develop a
new truth discovery solution that addresses uncertainty and
scalability challenges in social sensing applications.

7 DISCUSSIONS AND LIMITATIONS

This paper presented a SUTD scheme that addressed two
fundamental challenges in solving the truth discovery prob-
lem in social sensing: the uncertainty of reported data and
the scalability of the solution. This work contributes to
addressing the veracity aspect of the big data problem in
CPS applications. While the current results are encouraging,

there is room of further improvements. This section dis-
cusses some limitations we identified in the current SUTD
scheme as well as the future work that we plan to carry out
to address these limitations.

Sources are assumed to be independent in the current
SUTD scheme. However, dependency may exist between
sources, especially when they are connected through social
networks. A set of social-aware truth discovery models have
been recently developed to effectively address the source
dependency problem in social sensing [17], [60]. On the
other hand, no correlations are assumed between claims
in our framework. The claim correlation problem has been
studied by the authors in a separate line of work by in-
corporating the joint distribution on claim correlations into
the truth discovery problem [58]. It worthy of noting that
the aforementioned solutions on source dependency and
claim correlation were developed under the same analytical
framework as the SUTD scheme. This allows the authors
to quickly develop a more generalized uncertainty-aware
truth discovery model that explicitly considers both the
source dependency and claim correlation under a unified
framework.

The uncertainty estimation heuristics used in the SUTD
scheme offer opportunities for future improvements. The
Syntactic, Semantic, Syntactic+Semantic heuristics are only
first approximations. Authors plan to improve them by
leveraging more comprehensive techniques (e.g., text min-
ing, natural language processing, etc.) to estimate the uncer-
tainty of claims from a deeper analysis of the tweet contents.
Some recent efforts provide good insights into this direction
by developing new methods to exploit the lexicon, syntax
and semantics of data from Twitter [13], [54]. Moreover, the
uncertainty estimation module is a plug-in of the SUTD
scheme, which gives us the flexibility to substitute it with
a more refined one in the future.

In this paper, we mainly focused on the physical events
(e.g., disaster and emergency scenarios). The reason is that
the factual information is more significant in the physical
events compared to the social events (e.g., president elec-
tions, protests) [56]. We also applied our model on the social
events based datasets and the results are not very positive.
The reasons are at least twofold: (i) There are a large
amount of unfactual observations, sentiments and spams in
the social events, which makes the truth discovery task in
such context extremely challenging. (ii) The sources have a
stronger social dependency in such events and misinforma-
tion and rumor spreading is much more significant com-
pared to the physical events. We plan to further generalize
the SUTD scheme to handle the unfactual claims and source
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dependency. In particular, we could model the factualness as
an additional property of claims and integrate such property
into the truth discovery framework. Moreover, we also plan
to explicitly model the source dependency and incorporate
such dependency into the SUTD scheme in a similar manner
as other social-aware truth discovery framework [17], [60].

Considering the scope of the paper, we did not explicitly
model the behavior of malicious users. Instead, we model
the unknown source reliability in the SUTD scheme where
the reliability of sources is not known to the social sensing
applications a priori. Previous work have addressed ma-
licious users detection problem and presented approaches
to identify malicious users on social media [8], [15]. These
results of the above work can be readily integrated with the
SUTD scheme to solve the truth discovery with malicious
users identification and removal as a pre-processing step. In
particular, we will generalize the SUTD model by incorpo-
rating the malicious users detection results as prior knowl-
edge, which will enforce a faster convergence of the EM
algorithm and generate more accurate estimation results.
Furthermore, we also plan to extend our current model to
explicitly address source dependency and misinformation
spread, which is critical to address the collusion attacks from
the malicious users.

The time dimension of the problem deserves more in-
vestigation. When the uncertainty that a source expresses
on claims changes with large dynamics over time, how to
best account for it in the estimation framework? A time-
sensitive model is needed to better handle such dynamics.
Recent work in fact-finding literature starts to develop a
new category of streaming EM algorithms that quickly up-
date the estimation parameters using a recursive estimation
approach [57]. Inspired by these results, the authors plan
to develop similar real-time features of our SUTD scheme
to better capture the dynamics in the uncertainty change.
One key challenge is to design a nice tradeoff between
estimation accuracy and computation complexity of the
streaming algorithm. The authors are actively working on
the above extensions.

8 CONCLUSION

This paper presents a Scalable Uncertainty-Aware Truth
Discovery (SUTD) scheme to address two fundamental chal-
lenges that have not been well addressed in current truth
discovery solutions: uncertainty of claims and scalability of
algorithms. The SUTD scheme solves a constraint estimation
problem to estimate both the correctness of reported data
and the reliability of data sources while explicitly consider-
ing the uncertainty on the reported data. The SUTD scheme
can run a Graphic Processing Unit with thousands of cores,
which is shown to run a few orders of magnitude faster
than current truth discovery solutions. We evaluated the
performance of SUTD in comparison with the state-of-the-
art baselines using three real world datasets collected from
Twitter. The results show that SUTD scheme improves both
the estimation accuracy and execution time of current truth
discovery solutions. The results of this paper lay out a solid
foundation to develop more scalalbe and accurate truth
discovery models for big data social sensing applications
in future research.
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